这段代码很Pythonic | 相见恨晚的 itertools 库

作者:忆先

来源:见文末

前言

最近事情不是很多,想写一些技术文章分享给大家,同时也对自己一段时间来碎片化接受的知识进行一下梳理,所谓写清楚才能说清楚,说清楚才能想清楚,就是这个道理了。

很多人都致力于把Python代码写得更Pythonic,一来更符合规范且容易阅读,二来一般Pythonic的代码在执行上也更有效率。今天就先给大家介绍一下Python的系统库itertools。

itertools库

迭代器(生成器)在Python中是一种很常用也很好用的数据结构,比起列表(list)来说,迭代器最大的优势就是延迟计算,按需使用,从而提高开发体验和运行效率,以至于在Python 3中map,filter等操作返回的不再是列表而是迭代器。

话虽这么说但大家平时用到的迭代器大概只有range了,而通过iter函数把列表对象转化为迭代器对象又有点多此一举,这时候我们今天的主角itertools就该上场了。

使用itertools

itertools中的函数大多是返回各种迭代器对象,其中很多函数的作用我们平时要写很多代码才能达到,而在运行效率上反而更低,毕竟人家是系统库。

itertools.accumulate

简单来说就是累加。

>>> import itertools
>>> x = itertools.accumulate(range(10))
>>> print(list(x))
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

itertools.chain

连接多个列表或者迭代器。

>>> x = itertools.chain(range(3), range(4), [3,2,1])
>>> print(list(x))
[0, 1, 2, 0, 1, 2, 3, 3, 2, 1]

itertools.combinations

求列表或生成器中指定数目的元素不重复的所有组合

>>> x = itertools.combinations(range(4), 3)
>>> print(list(x))
[(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]

itertools.combinations_with_replacement

允许重复元素的组合

>>> x = itertools.combinations_with_replacement('ABC', 2)
>>> print(list(x))
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'B'), ('B', 'C'), ('C', 'C')]

itertools.compress

按照真值表筛选元素

>>> x = itertools.compress(range(5), (True, False, True, True, False))
>>> print(list(x))
[0, 2, 3]

itertools.count

就是一个计数器,可以指定起始位置和步长

>>> x = itertools.count(start=20, step=-1)
>>> print(list(itertools.islice(x, 0, 10, 1)))
[20, 19, 18, 17, 16, 15, 14, 13, 12, 11]

itertools.cycle

循环指定的列表和迭代器

>>> x = itertools.cycle('ABC')
>>> print(list(itertools.islice(x, 0, 10, 1)))
['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C', 'A']

itertools.dropwhile

按照真值函数丢弃掉列表和迭代器前面的元素

>>> x = itertools.dropwhile(lambda e: e < 5, range(10))
>>> print(list(x))
[5, 6, 7, 8, 9]

itertools.filterfalse

保留对应真值为False的元素

>>> x = itertools.filterfalse(lambda e: e < 5, (1, 5, 3, 6, 9, 4))
>>> print(list(x))
[5, 6, 9]

itertools.groupby

按照分组函数的值对元素进行分组

>>> x = itertools.groupby(range(10), lambda x: x < 5 or x > 8)                                                                                                
>>> for condition, numbers in x:                                                  
...     print(condition, list(numbers))                                                                                                        
True [0, 1, 2, 3, 4]                                                              
False [5, 6, 7, 8]                                                                
True [9]

itertools.islice

上文使用过的函数,对迭代器进行切片

>>> x = itertools.islice(range(10), 0, 9, 2)
>>> print(list(x))
[0, 2, 4, 6, 8]

itertools.permutations

产生指定数目的元素的所有排列(顺序有关)

>>> x = itertools.permutations(range(4), 3)
>>> print(list(x))
[(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0,3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]

itertools.product

产生多个列表和迭代器的(积)

>>> x = itertools.product('ABC', range(3))
>>>
>>> print(list(x))
[('A', 0), ('A', 1), ('A', 2), ('B', 0), ('B', 1), ('B', 2), ('C', 0), ('C', 1), ('C', 2)]

itertools.repeat

简单的生成一个拥有指定数目元素的迭代器

>>> x = itertools.repeat(0, 5)
>>> print(list(x))
[0, 0, 0, 0, 0]

itertools.starmap

类似map

>>> x = itertools.starmap(str.islower, 'aBCDefGhI')
>>> print(list(x))
[True, False, False, False, True, True, False, True, False]

itertools.takewhile

与dropwhile相反,保留元素直至真值函数值为假。

>>> x = itertools.takewhile(lambda e: e < 5, range(10))
>>> print(list(x))
[0, 1, 2, 3, 4]

itertools.tee

这个函数我也不是很懂,似乎是生成指定数目的迭代器

>>> x = itertools.tee(range(10), 2)
>>> for letters in x:
...     print(list(letters))
...
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

itertools.zip_longest

类似于zip,不过已较长的列表和迭代器的长度为准

>>> x = itertools.zip_longest(range(3), range(5))
>>> y = zip(range(3), range(5))
>>> print(list(x))
[(0, 0), (1, 1), (2, 2), (None, 3), (None, 4)]
>>> print(list(y))
[(0, 0), (1, 1), (2, 2)]

结语

大概就总结到这里,不过老实说Python的各种语言特性和库还是要多用才能熟练,最终达到随手拈来的程度,装逼的说就是由术入道。

  • 来源:忆先
  • 原文链接:https://segmentfault.com/a/1190000008590958

《Python人工智能和全栈开发》2018年07月23日即将在北京开课,120天冲击Python年薪30万,改变速约~~~~

*声明:推送内容及图片来源于网络,部分内容会有所改动,版权归原作者所有,如来源信息有误或侵犯权益,请联系我们删除或授权事宜。

- END -


更多Python好文请点击【阅读原文】哦

↓↓↓

原文发布于微信公众号 - 马哥Linux运维(magedu-Linux)

原文发表时间:2018-05-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Java学习网

Java 8的函数式编程学习

Java 8的函数式编程学习 函数式编程语言是什么? 函数式编程语言的核心是它以处理数据的方式处理代码。这意味着函数应该是第一等级(First-class)的...

2447
来自专栏数据科学与人工智能

【Python环境】Python函数式编程指南(1):概述

1. 函数式编程概述 1.1. 什么是函数式编程? 函数式编程使用一系列的函数解决问题。函数仅接受输入并产生输出,不包含任何能影响产生输出的内部状态。任何情况下...

2156
来自专栏向治洪

迭代器模式

迭代器模式(Iterator): 提供一种方法顺序访问一个聚合对象中的各个元素,而又不暴露其内部的表示。 用途:在软件构建过程中,集合对象内部结构常常变化各异。...

17910
来自专栏带你撸出一手好代码

JavaScript对象的呼叫转移

声明:此文以通俗易懂的模式讲解JavaScript语言中call、apply运行原理。 非业内人士或未成年人请点左上角按扭及时离开以避免走火入魔。 事实上类似于...

3126
来自专栏撸码那些事

C#委托之我见

委托的使用方式很简单,了解一下基本语法就可以开撸了。但是使用委托的真正难题是不知道应用场景,就像习得了一门新功夫,但是却找不到任何施展拳脚的地方。这个难题一直困...

673
来自专栏小樱的经验随笔

【批处理学习笔记】第二十一课:数值计算

    批处理里面的数值计算功能较弱,只能够进行整型计算,忽略浮点数的小数部分;同时数值计算的范围也受限于系统位数,对于目前较为常见的32位机来说,数值计算能处...

2724
来自专栏分布式系统和大数据处理

四种简单的排序算法

我觉得如果想成为一名优秀的开发者,不仅要积极学习时下流行的新技术,比如WCF、Asp.Net MVC、AJAX等,熟练应用一些已经比较成熟的技术,比如Asp.N...

912
来自专栏JavaQ

烂代码吐槽汇 | 奇葩命名

代码首先是给人看的,其次才是给机器看的。 烂代码特征:可读性差、逻辑混乱、性能低下。 1.奇葩项目(模块)名 项目(模块)名称使用汉语拼音、英汉双拼、超长的字母...

3265
来自专栏java一日一条

Java面试参考指南(一)

Java是一种基于面向对象概念的编程语言,使用高度抽象化来解决现实世界的问题。 面向对象的方法将现实世界中的对象进行概念化,以便于在应用之间进行重用。例如...

1143
来自专栏编程

您真的会用switch吗?

C语言的理念,程序员应该知道自己正在干什么,而且保证自己的所作所为是正确的。 switch知多少 各个case和default的顺序可以是任意的,但习惯上总是d...

1837

扫码关注云+社区