python实现gabor滤波器提取纹理特征 提取指静脉纹理特征 指静脉切割代码

参考博客:https://blog.csdn.net/xue_wenyuan/article/details/51533953

https://blog.csdn.net/jinshengtao/article/details/17797641

傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后,

  图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具。

在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器。Gabor滤波器的频率和方向表达同人类视觉系统类似。研究发现,Gabor滤波器十分适合纹理表达和分离。在空间域中,一个二维Gabor滤波器是一个由正弦平面波调制的高斯核函数。

gabor核函数的表达式:

  复数表达式:

  可以拆解:实部:

       虚部:

其中:

参数介绍:

方向(θ):这个参数指定了Gabor函数并行条纹的方向,它的取值为0到360度

波长(λ):它的值以像素为单位指定,通常大于等于2.但不能大于输入图像尺寸的五分之一。

相位偏移(φ):它的取值范围为-180度到180度。其中,0he180度分别对应中心对称的center-on函数和center-off函数,而-90度和90度对应反对称函数。

长宽比(γ):空间纵横比,决定了Gabor函数形状(support,我翻译为形状)的椭圆率(ellipticity)。当γ= 1时,形状是圆的。当γ< 1时,形状随着平行条纹方向而拉长。通常该值为0.5

带宽(b):Gabor滤波器的半响应空间频率带宽b和σ/ λ的比率有关,其中σ表示Gabor函数的高斯因子的标准差,如下:

σ的值不能直接设置,它仅随着带宽b变化。带宽值必须是正实数,通常为1,此时,标准差和波长的关系为:σ= 0.56 λ。带宽越小,标准差越大,Gabor形状越大,可见平行兴奋和抑制区条纹数量越多。

好介绍完毕。

现在进入主题,我们提取纹理特征。

  提取纹理特征,还有增强纹理特征,很多时候我们都是要先提取ROI感兴趣区域来进行操作的。很多图片上的其他空间其实对我们没有什么太大的作用,还影响程序的运行速度。则我们只拿ROI区域进行纹理提取。

先看看原来的指静脉图片:

这图片区域很多,一般我们只需要中间那部分指静脉纹理最多的ROI区域。

代码:

#!/usr/bin/python
#coding:utf-8
import numpy as np
import os
import cv2

def pathFile(path):
    return os.getcwd() + '/' + path

def brightestColumn(img):
    w, h = img.shape
    r = range(h / 2, h - 1)
    c = range(0, w - 1)
    return img[c][:,r].sum(axis=0).argmax()

#构建GABOR滤波器
def build_filters():
    """ returns a list of kernels in several orientations
    """
    filters = []
    ksize = 31                                                                 #gaborl尺度 这里是一个
    for theta in np.arange(0, np.pi, np.pi / 4):                               #gaborl方向 0 45 90 135 角度尺度的不同会导致滤波后图像不同
        
        params = {'ksize':(ksize, ksize), 'sigma':3.3, 'theta':theta, 'lambd':18.3,    
                  'gamma':4.5, 'psi':0.89, 'ktype':cv2.CV_32F}
                                                                            #gamma越大核函数图像越小,条纹数不变,sigma越大 条纹和图像都越大
                                                                            #psi这里接近0度以白条纹为中心,180度时以黑条纹为中心
                                                                            #theta代表条纹旋转角度
                                                                            #lambd为波长 波长越大 条纹越大
        kern = cv2.getGaborKernel(**params)                                    #创建内核
        kern /= 1.5*kern.sum()
        filters.append((kern,params))
    return filters                                                          

#滤波过程
def process(img, filters):
    """ returns the img filtered by the filter list
    """
    accum = np.zeros_like(img)                                              #初始化img一样大小的矩阵
    for kern,params in filters:
        fimg = cv2.filter2D(img, cv2.CV_8UC3, kern)                         #2D滤波函数  kern为其滤波模板
        np.maximum(accum, fimg, accum)                                      #参数1与参数2逐位比较  取大者存入参数3  这里就是将纹理特征显化更加明显
    return accum

#获取感兴趣区域的top 和 bottom值 用于切割显示图像
def getRoiHCut2(img, p0):
    h, w = img.shape

    maxTop = np.argmax(img[0: h / 2, 0])                                    #在一定区域遍历选取指静脉边缘 具体高宽结合图像
    minTop = np.argmax(img[0: h / 2, w-1])
    if(maxTop < 65):
        maxBottom = np.argmax(img[(13 * h / 16): 40*h/48  , 0]) + 3 * h / 4
        minBottom = np.argmax(img[(13 * h / 16): 40*h/48, w-1]) + 3 * h / 4
    else:
        maxBottom = np.argmax(img[(3 * h / 4): h  , 0]) + 3 * h / 4
        minBottom = np.argmax(img[(3 * h / 4): h, w-1]) + 3 * h / 4
    maxTop = (2*maxTop + minTop) / 3
    maxBottom = (maxBottom + 2*minBottom) / 3

    return img[maxTop:maxBottom,:]

#获取感兴趣区域范围
def getRoi(img):
    height, width = img.shape
    heightDist = height / 4

    w = img.copy()
    w1 = w[heightDist:3 * heightDist,width / 4:]
    p0 = brightestColumn(w1) + heightDist + height / 2                      #将手指边缘的高度加上四分之三原始高度  
    pCol = w[:,p0:p0 + 1]

    pColInv = pCol[::-1]

    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))              #构建一个有限对比适应性直方图均衡化器  

    w1_2 = clahe.apply(w[:, (p0 /20):(p0 + p0 / 2)])                       #截取区域宽度大概是p0高度的一点五倍 apply是获取一个返回值 这里是为了方便参数的传递
    w2 = getRoiHCut2(w1_2, p0)

    res = cv2.resize(w2, (270, 150), interpolation=cv2.INTER_CUBIC)

    return clahe.apply(res)

def logImg(img):
    return img.astype(float) / 255                                          #将图像数据转为0-1存储

函数全给了 自己调用后

好现在看看处理后的指静脉图片:

看起来还不错吧,预处理之后就可以 进行纹理特征提取放入文件进行模式匹配啊 进行指静脉识别啊。有兴趣的就期待在下之后的博客。

http://www.cnblogs.com/DOMLX/p/8989836.html 提取纹理特征

http://www.cnblogs.com/DOMLX/p/8672489.html 指静脉细化算法

http://www.cnblogs.com/DOMLX/p/8111507.html 指静脉切割过程

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

房价会崩盘吗?教你用 Keras 预测房价!(附代码)

书中其中一个应用例子就是用于预测波士顿的房价,这是一个有趣的问题,因为房屋的价值变化非常大。这是一个机器学习的问题,可能最适用于经典方法,如 XGBoost,因...

1292
来自专栏量子位

Attention!神经网络中的注意机制到底是什么?

原作:Adam Kosiorek 安妮 编译自 GitHub 量子位 出品 | 公众号 QbitAI 神经网络的注意机制(Attention Mechanism...

4035
来自专栏贾志刚-OpenCV学堂

图像处理开发者必读

小编作为一个图像与计算机视觉的开发者,总结了一下作为图像处理开发工程师应该知道或者掌握的图像处理知识点。跟大家分享一下,以备大家学习方便。 图像像素操作 -...

2604
来自专栏大学生计算机视觉学习DeepLearning

python实现gabor滤波器提取纹理特征 提取指静脉纹理特征 指静脉切割代码

5035
来自专栏机器学习专栏

机器学习:基于层次的聚类算法

尽管基于划分的聚类算法能够实现把数据集划分成指定数量的簇,但是在某些情况下,需要把数据集划分成不同层上的簇:比如,作为一家公司的人力资源部经理,你可以把所有的雇...

3.6K1
来自专栏技术随笔

[译] End-to-end people detection in crowded scenes

2846
来自专栏机器之心

学界 | 解读人类水平的概念学习和一次性泛化

选自Github 作者:PETER LEE 机器之心编译 参与:赵华龙、吴攀 前段时间,Peter Lee 在 Columbia Advanced Machin...

2688
来自专栏有趣的Python

2- 深度学习之神经网络核心原理与算法-提高神经网络学习效率

上一章我们介绍了基本的前馈神经网络的实现。 本节我们来介绍一些可以提高神经网络学习效率的方法。 并行计算 加快神经网络训练最直接的方式。我们需要得到的是一个网络...

52113
来自专栏PPV课数据科学社区

机器学习系列:(五)决策树——非线性回归与分类

决策树——非线性回归与分类 前面几章,我们介绍的模型都是广义线性模型,基本方法都是通过联接方程构建解释变量与若干响应变量的关联关系。我们用多元线性回归解决回归问...

3166
来自专栏大数据挖掘DT机器学习

R语言实现 支持向量机

一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保...

2743

扫码关注云+社区