SparkStreaming如何解决小文件问题

使用sparkstreaming时,如果实时计算结果要写入到HDFS,那么不可避免的会遇到一个问题,那就是在默认情况下会产生非常多的小文件,这是由sparkstreaming的微批处理模式和DStream(RDD)的分布式(partition)特性导致的,sparkstreaming为每个partition启动一个独立的线程来处理数据,一旦文件输出到HDFS,那么这个文件流就关闭了,再来一个batch的parttition任务,就再使用一个新的文件流,那么假设,一个batch为10s,每个输出的DStream有32个partition,那么一个小时产生的文件数将会达到(3600/10)*32=11520个之多。众多小文件带来的结果是有大量的文件元信息,比如文件的location、文件大小、block number等需要NameNode来维护,NameNode会因此鸭梨山大。不管是什么格式的文件,parquet、text,、JSON或者 Avro,都会遇到这种小文件问题,这里讨论几种处理Sparkstreaming小文件的典型方法。

增加batch大小

这种方法很容易理解,batch越大,从外部接收的event就越多,内存积累的数据也就越多,那么输出的文件数也就回变少,比如上边的时间从10s增加为100s,那么一个小时的文件数量就会减少到1152个。但别高兴太早,实时业务能等那么久吗,本来人家10s看到结果更新一次,现在要等快两分钟,是人都会骂娘。所以这种方法适用的场景是消息实时到达,但不想挤压在一起处理,因为挤压在一起处理的话,批处理任务在干等,这时就可以采用这种方法(是不是很像spark内部的pipeline模式,但是要注意区别哦)。

Coalesce大法好?

文章开头讲了,小文件的基数是:batch_number*partition_number,而第一种方法是减少batch_number,那么这种方法就是减少partition_number了,这个api不细说,就是减少初始的分区个数。看过spark源码的童鞋都知道,对于窄依赖,一个子RDD的partition规则继承父RDD,对于宽依赖(就是那些个叉叉叉ByKey操作),如果没有特殊指定分区个数,也继承自父rdd。那么初始的SourceDstream是几个partiion,最终的输出就是几个partition。所以Coalesce大法的好处就是,可以在最终要输出的时候,来减少一把partition个数。但是这个方法的缺点也很明显,本来是32个线程在写256M数据,现在可能变成了4个线程在写256M数据,而没有写完成这256M数据,这个batch是不算做结束的。那么一个batch的处理时延必定增长,batch挤压会逐渐增大。这种方法也要慎用,切鸡切鸡啊!

SparkStreaming外部来处理

我们既然把数据输出到hdfs,那么说明肯定是要用hive或者sparksql这样的“sql on hadoop”系统类进一步进行数据分析,而这些表一般都是按照半小时或者一小时、一天,这样来分区的(注意不要和sparkStreaming的分区混淆,这里的分区,是用来做分区裁剪优化的),那么我们可以考虑在SparkStreaming外再启动定时的批处理任务来合并SparkStreaming产生的小文件。这种方法不是很直接,但是却比较有用,“性价比”较高,唯一要注意的是,批处理的合并任务在时间切割上要把握好,搞不好就可能回去合并一个还在写入的SparkStreaming小文件。

自己调用foreach去append

SparkStreaming提供的foreach这个outout类api,可以让我们自定义输出计算结果的方法。那么我们其实也可以利用这个特性,那就是每个batch在要写文件时,并不是去生成一个新的文件流,而是把之前的文件打开。考虑这种方法的可行性,首先,HDFS上的文件不支持修改,但是很多都支持追加,那么每个batch的每个partition就对应一个输出文件,每次都去追加这个partition对应的输出文件,这样也可以实现减少文件数量的目的。这种方法要注意的就是不能无限制的追加,当判断一个文件已经达到某一个阈值时,就要产生一个新的文件进行追加了。

上边这些方法我都有尝试过,各有利弊,大家在使用时多加注意就可以了。

更多spark相关交流、分享、讨论,请加入知识星球,BAT一线工程师为你答疑解惑,免费修改简历,并进行面试指导。

原文发布于微信公众号 - Spark学习技巧(bigdatatip)

原文发表时间:2018-06-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CSDN技术头条

腾讯大规模Hadoop集群实践

TDW(Tencent distributed Data Warehouse,腾讯分布式数据仓库)基于开源软件Hadoop和Hive进行构建,打破了传统数据仓库...

4077
来自专栏工科狗和生物喵

计算机操作系统概念初解

一、存储系统 在计算机系统中存储层次可分为,处理器上的寄存器、高速缓冲存储器、主存储器(内存)、辅助存储器(外存)四级。高速缓冲存储器用来改善主存储器与中央处理...

3428
来自专栏A周立SpringCloud

微服务部署:蓝绿部署、滚动部署、灰度发布等部署方案对比与总结

在项目迭代的过程中,不可避免需要”上线“。上线对应着部署,或者重新部署;部署对应着修改;修改则意味着风险。 目前有很多用于部署的技术,有的简单,有的复杂;有的得...

5929
来自专栏机器人网

终于全了!ABB机器人学习资料

? 1、安全 自动模式中,任何人不得进入机器人工作区域 长时间待机时,夹具上不宜放置任何工件。 机器人动作中发生紧急情况或工作不正常时,均可使用E-stop键...

3213
来自专栏嵌入式程序猿

飞思卡尔MCU 增强型DMA简介

DMA简介 直接内存存取(DMA)是快速数据交换的重要技术,它具有独立于CPU的后台批量数据传输能力,能够满足处理中高速数据传输要求,随着技术的发展,现在大部分...

3406
来自专栏程序员宝库

后端说:只是你不懂怎么用 headers!

事情是这样的,上一个项目我们的后端提供的接口,一次性返回了所有数据给我,分页功能是前端自己完成的。

1147
来自专栏Spark学习技巧

论Spark Streaming的数据可靠性和一致性

摘要:Spark Streaming自发布起就得到了广泛的关注,然而作为一个年轻的项目,需要提升的地方同样很多,比如1.2之前版本driver挂掉可能会丢失数据...

2358
来自专栏进击的程序猿

袖珍分布式系统(四)

本文是Distributed systems for fun and profit的第四部分,本文是阅读该文后的一些记录。

652
来自专栏编程之路

羊皮书APP(Android版)开发系列(十六)Android 开源库的使用

952
来自专栏大数据挖掘DT机器学习

基于Hadoop 的分布式网络爬虫技术

一、网络爬虫原理 Web网络爬虫系统的功能是下载网页数据,为搜索引擎系统提供数据来源。很多大型的网络搜索引擎系统都被称为基于 Web数据采集的搜索引擎系统,比如...

4268

扫码关注云+社区