机器学习实战之Logistic回归

写在前面

Logistic回归涉及到高等数学,线性代数,概率论,优化问题。本文尽量以最简单易懂的叙述方式,以少讲公式原理,多讲形象化案例为原则,给读者讲懂Logistic回归。如对数学公式过敏,引发不适,后果自负。

Logistic回归原理与推导

Logistic回归中虽然有回归的字样,但该算法是一个分类算法,如图所示,有两类数据(红点和绿点)分布如下,如果需要对两类数据进行分类,我们可以通过一条直线进行划分(w0 x0 + w1 x1+w2 * x2)。当新的样本(x1,x2)需要预测时,带入直线函数中,函数值大于0,则为绿色样本(正样本),否则为红样本(负样本)。

推广到高维空间中,我们需要得到一个超平面(在二维是直线,在三维是平面,在n维是n-1的超平面)切分我们的样本数据,实际上也就是求该超平面的W参数,这很类似于回归,所以取名为Logistic回归。

sigmoid函数

当然,我们不直接使用z函数,我们需要把z值转换到区间0-1之间,转换的z值就是判断新样本属于正样本的概率大小。

我们使用sigmoid函数完成这个转换过程,公式如下。通过观察sigmoid函数图,如图所示,当z值大于0时,σ值大于0.5,当z值小于0时,σ值小于于0.5。利用sigmoid函数,使得Logistic回归本质上是一个基于条件概率的判别模型。

目标函数

其实,我们现在就是求W,如何求W呢,我们先看下图,我们都能看出第二个图的直线切分的最好,换句话说,能让这些样本点离直线越远越好,这样对于新样本的到来,也具有很好的划分,那如何用公式表示并计算这个目标函数呢?

我们把sigmoid公式应用到z函数中:

通过条件概率可推出下面公式,对公式进行整合为一个,见下。

假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积:

这个公式过于复杂,不太容易求导,这里通过log转换:

这时就需要这个目标函数的值最大,以此求出θ。

梯度上升法

在介绍梯度上升法之前,我们看一个中学知识:求下面函数在x等于多少时,取最大值。

函数图:

解:求f(x)的导数:2x,令其为0,求得x=0时,取最大值为0。但在函数复杂时,求出导数也很难计算函数的极值,这时就需要使用梯度上升法,通过迭代,一步步逼近极值,公式如下,我们顺着导数的方向(梯度)一步步逼近。

利用梯度算法计算该函数的x值:

def f(x_old):
         return -2*x_old
    
def cal():
     x_old  = 0
     x_new = -6
     eps = 0.01
     presision = 0.00001
     while abs(x_new-x_old)>presision:
        x_old=x_new
        x_new=x_old+eps*f(x_old)
     return x_new

-0.0004892181072978443
目标函数求解

这里,我们对函数求偏导,得到迭代公式如下:

Logistic回归实践

数据情况

读入数据,并绘图显示:

def loadDataSet():
    dataMat = [];labelMat = []
    fr = open('数据/Logistic/TestSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat
训练算法

利用梯度迭代公式,计算W:

def sigmoid(inX):
    return 1.0/(1 + np.exp(-inX))

def gradAscent(dataMatIn, labelMatIn):
    dataMatrix = np.mat(dataMatIn)
    labelMat = np.mat(labelMatIn).transpose()
    m,n = np.shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

通过计算的weights绘图,查看分类结果:

16.png

算法优缺点

  • 优点:易于理解和计算
  • 缺点:精度不高

写在最后

最近在运营自己的原创公众号,以后文章会在公众号首发,希望各位读者多多关注支持。

万水千山总是情,点波关注行不行。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习之旅

R开发:协调过滤推荐

对于realRatingMatrix有六种方法:IBCF(基于物品的推荐)、UBCF(基于用户的推荐)、PCA(主成分分析)、RANDOM(随机推荐)、SVD(...

802
来自专栏开心的学习之路

机器学习项目流程及模型评估验证

4.9日到现在一直在做Udacity的P1项目——波士顿房价预测。这个项目让我收获最大的就是理清了机器学习解决问题的整体流程,搭起一个框架,学会了寻找模型的最优...

5337
来自专栏有趣的Python和你

机器学习实战之线性回归

之前我们学习的机器学习算法都是属于分类算法,也就是预测值是离散值。当预测值为连续值时,就需要使用回归算法。本文将介绍线性回归的原理和代码实现。

1408
来自专栏Petrichor的专栏

论文阅读: FPN

基于深度网络的检测算法出来之前,检测算法基本都是基于这种scale handling;后来出现的SNIP、SNIPER也是基于Image Pyramid。 ...

1102
来自专栏算法channel

算法channel 2017回顾

1 算法channel 公众号才成立两个月,在这段日子,每天推送一篇算法,机器学习,深度学习相关的文章,包括: 算法的基本思想 算法的实例分析 有些算法的源代码...

3366
来自专栏专知

【最新前沿】Facebook何恺明等大神最新论文提出非局部神经网络(Non-local Neural Networks)

【导读】Facebook何恺明和RGB两位大神最近提出非局部操作non-local operations为解决视频处理中时空域的长距离依赖打开了新的方向。文章采...

3684
来自专栏ATYUN订阅号

使用Keras建立Wide & Deep神经网络,通过描述预测葡萄酒价格

你能通过“优雅的单宁香”、“成熟的黑醋栗香气”或“浓郁的酒香”这样的描述,预测葡萄酒的价格吗?事实证明,机器学习模型可以。

1333
来自专栏汪毅雄的专栏

机器学习之回归原理详述(一)

本文用了从数学层面和代码层面,再结合一些通俗易懂的例子,详细地描述了回归主要涉及的原理和知识,希望对于机器学习的初学者或者有兴趣研究模型具体实现的同学带来一点帮...

1.1K3
来自专栏Python中文社区

Python机器学习算法入门之梯度下降法实现线性回归

專 欄 ❈ ZZR,Python中文社区专栏作者,OpenStack工程师,曾经的NLP研究者。主要兴趣方向:OpenStack、Python爬虫、Pytho...

2305
来自专栏有趣的Python和你

机器学习实战之线性回归

1215

扫码关注云+社区