Python:怎样用线程将任务并行化?

如果待处理任务满足:

  1. 可拆分,即任务可以被拆分为多个子任务,或任务是多个相同的任务的集合;
  2. 任务不是CPU密集型的,如任务涉及到较多IO操作(如文件读取和网络数据处理)

则使用多线程将任务并行运行,能够提高运行效率。

假设待处理的任务为:有很多文件目录,对于每个文件目录,搜索匹配一个给定字符串的文件的所有行(相当于是实现grep的功能)。 则此处子任务为:给定一个目录,搜索匹配一个给定字符串的文件的所有行。总的任务为处理所有目录。

将子任务表示为一个函数T,如下所示:

def T(dir, pattern):
  print('searching pattern %s in dir %s' % (pattern, dir))
  ...

为每个子任务创建一个线程

要实现并行化,最简单的方法是为每一个子任务创建一个thread,thread处理完后退出。

from threading import Thread
from time import sleep

def T(dir, pattern):
  "This is just a stub that simulate a dir operation"
  sleep(1)
  print('searching pattern %s in dir %s' % (pattern, dir))

threads = []
dirs = ['a/b/c', 'a/b/d', 'b/c', 'd/f']
pattern = 'hello'

for dir in dirs:
  thread = Thread(target=T, args=(dir, pattern))   1
  thread.start()   2
  threads.append(thread)

for thread in threads:
  thread.join()   3

print('Main thread end here')
  • 1 :创建一个Thread对象,target参数指定这个thread待执行的函数,args参数指定target函数的输入参数
  • 2 :启动这个thread。 T(dir, pattern)将被调用
  • 3 :等待,直到这个thread结束。整个for循环表示主进程会等待所有子线程结束后再退出

程序的运行结果为:

searching pattern hello in dir a/b/csearching pattern hello in dir d/f
searching pattern hello in dir b/c
 searching pattern hello in dir a/b/d

Main thread end here

可以看出由于线程是并行运行的,部分输出会交叠。但主进程的打印总在最后。

以上例子中对于每个dir都需要创建一个thread。如果dir的数目较多,则会创建太多的thread,影响运行效率。 较好的方式是限制总线程的数目。

限制线程数目

可以使用信号量(semaphore)来限制同时运行的最大线程数目。如下所示:

from threading import Thread, BoundedSemaphore
from time import sleep

def T(dir, pattern):
  "This is just a stub that simulate a dir operation"
  sleep(1)
  print('searching pattern %s in dir %s' % (pattern, dir))

threads = []
dirs = ['a/b/c', 'a/b/d', 'b/c', 'd/f']
pattern = 'hello'

maxjobs = BoundedSemaphore(2)   1
def wrapper(dir, pattern):
  T(dir, pattern)
  maxjobs.release()   2

for dir in dirs:
  maxjobs.acquire()   3
  thread = Thread(target=wrapper, args=(dir, pattern))
  thread.start()
  threads.append(thread)

for thread in threads:
  thread.join() 

print('Main thread end here')
  • 1 :创建一个有2个资源的信号量。一个信号量代表总的可用的资源数目,这里表示同时运行的最大线程数目为2。
  • 2 :在线程结束时释放资源。运行在子线程中。
  • 3 :在启动一个线程前,先获取一个资源。如果当前已经有2个线程在运行,则会阻塞,直到其中一个线程结束。 运行在主线程中。

当限制了最大运行线程数为2后,由于只有2个线程同时运行,程序的输出更加有序,几乎总是为:

searching pattern hello in dir a/b/c
searching pattern hello in dir a/b/d
searching pattern hello in dir b/c
searching pattern hello in dir d/f
Main thread end here

以上实现中为每个子任务创建一个线程进行处理,然后通过信号量限制同时运行的线程的数目。如果子任务很多,这种方法会创建太多的线程。更好的方法 是使用线程池。

使用线程池(Thread Pool)

即预先创建一定数目的线程,形成一个线程池。每个线程持续处理多个子任务(而不是处理一个就退出)。这样做的好处是:创建的线程数目会比较固定。

那么,每个线程处理哪些子任务呢?一种方法为:预先将所有子任务均分给每个线程。如下所示:

from threading import Thread
from time import sleep

def T(dir, pattern):
  "This is just a stub that simulate a dir operation"
  sleep(1)
  print('searching pattern %s in dir %s' % (pattern, dir))

dirs = ['a/b/c', 'a/b/d', 'b/c', 'd/f']
pattern = 'hello'

def wrapper(dirs, pattern):   1
  for dir in dirs:
    T(dir, pattern)

threadsPool = [   2
  Thread(target=wrapper, args=(dirs[0:2], pattern)),
  Thread(target=wrapper, args=(dirs[2:], pattern)),
]

for thread in threadsPool:   3
  thread.start()

for thread in threadsPool:
  thread.join()

print('Main thread end here')
  • 1 :这个函数能够处理多个dir,将作为线程的target函数
  • 2 :创建一个有2个线程的线程池。并事先分配子任务给每个线程。线程1处理前两个dir,线程2处理后两个dir
  • 3 :启动线程池中所有线程

程序的输出结果为:

searching pattern hello in dir a/b/csearching pattern hello in dir b/c

searching pattern hello in dir d/f
 searching pattern hello in dir a/b/d
Main thread end here

这种方法存在以下问题:

  1. 子任务分配可能不均。导致每个线程运行时间差别可能较大,则整体运行时长可能被拖长
  2. 只能处理所有子任务都预先知道的情况,无法处理子任务实时出现的情况

如果有一种方法,能够让线程知道当前所有的待处理子任务,线程一旦空闲,便可以从中获取一个任务进行处理,则以上问题都可以解决。任务队列便是解决方案。

使用消息队列

可以使用Queue实现一个任务队列,用于在线程间传递子任务。主线程将所有待处理子任务放置在队列中,子线程从队列中获取子任务去处理。 如下所有(注:以下代码只运行于Python 2,因为Queue只存在于Python 2) :

from threading import Thread
from time import sleep
import Queue

def T(dir, pattern):
  "This is just a stub that simulate a dir operation"
  sleep(1)
  print('searching pattern %s in dir %s' % (pattern, dir))

dirs = ['a/b/c', 'a/b/d', 'b/c', 'd/f']
pattern = 'hello'

taskQueue = Queue.Queue()   1

def wrapper():
  while True:
    try:
      dir = taskQueue.get(True, 0.1)   2
      T(dir, pattern)
    except Queue.Empty:
	continue

threadsPool = [Thread(target=wrapper) for i in range(2)]   3

for thread in threadsPool: 
  thread.start()    4

for dir in dirs:
  taskQueue.put(dir)   5

for thread in threadsPool:
  thread.join()
print('Main thread end here')
  • 1 :创建一个任务队列
  • 2 :子线程从任务队列中获取一个任务。第一个参数为True,表示如果没有任务,会等待。第二个参数表示最长等待0.1秒 如果在0.1秒后仍然没有任务,则会抛出一个Queue.Empty的异常
  • 3 :创建有2个线程的线程池。注意target函数wrapper没有任何参数
  • 4 :启动所有线程
  • 5 :主线程将所有子任务放置在任务队列中,以供子线程获取处理。由于子线程已经被启动,则子线程会立即获取到任务并处理

程序的输出为:

searching pattern hello in dir a/b/c
searching pattern hello in dir a/b/d
searching pattern hello in dir b/c
 searching pattern hello in dir d/f

从中可以看出主进程的打印结果并没有出来,程序会一直运行,而不退出。这个问题的原因是:目前的实现中,子线程为一个无限循环, 因此其永远不会终止。因此,必须有一种机制来结束子进程。

终止子进程

一种简单方法为,可以在任务队列中放置一个特殊元素,作为终止符。当子线程从任务队列中获取这个终止符后,便自行退出。如下所示,使用None作为终止符。

from threading import Thread
from time import sleep
import Queue

def T(dir, pattern):
  "This is just a stub that simulate a dir operation"
  sleep(1)
  print('searching pattern %s in dir %s' % (pattern, dir))

dirs = ['a/b/c', 'a/b/d', 'b/c', 'd/f']
pattern = 'hello'

taskQueue = Queue.Queue()

def wrapper():
  while True:
    try:
      dir = taskQueue.get(True, 0.1)
      if dir is None:   1
	taskQueue.put(dir)   2
	break

      T(dir, pattern)
    except Queue.Empty:
	continue

threadsPool = [Thread(target=wrapper) for i in range(2)]

for thread in threadsPool:
  thread.start()

for dir in dirs:
  taskQueue.put(dir)

taskQueue.put(None)   3

for thread in threadsPool:
  thread.join()
print('Main thread end here')
  • 1 :如果任务为终止符(此处为None),则退出
  • 2 :将这个终止符重新放回任务队列。因为只有一个终止符,如果不放回,则其它子线程获取不到,也就无法终止
  • 3 :将终止符放在任务队列。注意必须放置在末尾,否则终止符后的任务无法得到处理

修改过后,程序能够正常运行,主进程能够正常退出了。

searching pattern hello in dir a/b/csearching pattern hello in dir a/b/d

searching pattern hello in dir b/c
 searching pattern hello in dir d/f
Main thread end here

总结

要并行化处理子任务,最简单的方法是为每个子任务创建一个线程去处理。这种方法的缺点是:如果子任务非常多,则需要创建的线程数目会非常多。 并且同时运行的线程数目也会较多。通过使用信号量来限制同时运行的线程数目,通过线程池来避免创建过多的线程。

与每个线程处理一个任务不同,线程池中每个线程会处理多个子任务。这带来一个问题:每个子线程如何知道要处理哪些子任务。 一种方法是预先将所有子任务均分给每个线程,而更灵活的方法则是通过任务队列,由子线程自行决定要处理哪些任务。

使用线程池时,线程主函数通常实现为一个无限循环,因此需要考虑如何终止线程。可以在任务队列中放置一个终止符来告诉线程没有更多任务, 因此其可以终止。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Android机动车

RxJava从入门到不离不弃(一)——基本概念和使用

RxJava的编程思想已经在Android开发者中变得越来越流行。有个不好的点就是上手不太容易,尤其是大部分人之前都是使用命令式编程语言。

712
来自专栏个人随笔

Java IO流

package cn.bdqn.demo; import java.io.File; import java.io.FileInputStream; impo...

2606
来自专栏史上最简单的Spring Cloud教程

一篇RxJava友好的文章(二)

上一篇文章介绍了rxjava的基本用法,和一些常用的操作符,以及rxjava的链式操作带来的好处。由于rxjava非常的强大,让我如此的痴迷,我打算写五篇文章,...

1758
来自专栏一个会写诗的程序员的博客

【Java 并发】 之 AQS 详解 & volatile关键字CPU内存架构volatile关键字的作用

谈到并发,不得不谈ReentrantLock;而谈到ReentrantLock,不得不谈AbstractQueuedSynchronizer(AQS)!

813
来自专栏你不就像风一样

Java之文本文件的创建和读取(含IO流操作)

742
来自专栏Linyb极客之路

JAVA多线程和并发基础面试问答

一个进程是一个独立(self contained)的运行环境,它可以被看作一个程序或者一个应用。而线程是在进程中执行的一个任务。Java运行环境是一个包含了不同...

781
来自专栏JAVA技术zhai

干货:Java并发编程系列之synchronized(一)

2657
来自专栏三好码农的三亩自留地

浅析 RxJava 2.x 线程调度

为了说明原理,排除干扰,这里用了最简单的逻辑。产生一个字符串“Hello rxJava”, 然后在监听中打印log,subscribeOn(Schedulers...

491
来自专栏青枫的专栏

关于多线程的几道面试小题

  自定义类中不是所有的代码都需要被线程执行。   而这个时候,为了区分哪些代码能够被线程执行,java提供了Thread类中的run()方法,用来包含那些需要...

421
来自专栏开发技术

结合ThreadLocal来看spring事务源码,感受下清泉般的洗涤!

  在我的博客spring事务源码解析中,提到了一个很关键的点:将connection绑定到当前线程来保证这个线程中的数据库操作用的是同一个connection...

711

扫码关注云+社区