专栏首页大数据技术学习想从事大数据、海量数据处理相关的工作,如何自学打基础?
原创

想从事大数据、海量数据处理相关的工作,如何自学打基础?

想做数据处理尤其是大数据量处理的相关工作必须兼具计算机科学基础和统计基础。 现在有一个高大上的职业叫数据科学家,有人说数据科学家就是一个比程序员更懂统计的统计学家,一个比统计学家更会编程的程序员。觉得说得很形象。

考虑到你还是在读本科生,有很多知识和课程还需要作为基础来学习和巩固。

大数据QQ群:716581014 共同进步学习

基础中的基础: 线性代数,概率论

核心知识: 数理统计 预测模型 机器学习

计算机:

  • 数学软件:强大矩阵运算和优化功能的matlab,专而精的mathematica。
  • 语言:python(很流行的科学语言,潜力也很大,ipython这样交互式环境十分有利),fortran(强大的计算语言,充分优化的现成代码),R(相比于matlab,java,c,R是个高富帅)
  • 可视化

这是数据分析各类语言使用度的图表,R占的比例还是相当高啊。想利用现在动辄TB级的数据大显身手,光靠excel可不够啊。你真的需要写很多代码…

统计:时间序列分析 应用回归(很简单,亦很实用) 多元统计分析

1. 自己装个小集群跑hadoop/hive,可以到cloudera网站上下现成的打包虚拟机。看看hadoop in action. 这本书比权威指南容易懂很多。

2. 装个cassandra什么的玩玩,在上面架个小项目,比如留言板什么的。。

3. 读一些著名的paper,nosql的或者mapreduce。

4. 看看apache hadoop家族的其他几个项目,比如zookeeper,pig,了解一下生态圈

到这里为止你大概有个概念,知道bigdata怎么回事了

找个开源项目,看看ticket list,看看能不能自己修。。

能的话看看能不能混进项目组 个人觉得,大数据要靠实践多一点。在真的上百上千节点的cluster上跑hadoop和自己虚拟机架的完全不同。cluster

上跑各种奇葩的事情单机都是碰不到的。。就好比dba靠读书考证很难牛屄一样。所以最终还是要找个公司实战。。不

过如果上面几个都做到的花,基本上应聘大数据公司问题不大了。 ---------------------------------- 做大数据平台工作现在满一周年多几天,再看上面的答案觉得说得不是很到位。

在国内的环境下,似乎还是Hadoop用得更多,其他更fancy的东西比如presto/spark什么的,湾区也算是新鲜事物,

并不是很多公司都在用(也有原因是真的适用的公司也不算太多了)。更实际节省的做法是,学Hadoop,至少要了解

系统架构和数据的流向,比如怎么partition,怎么shuffle,combiner怎么work之类的大概念,对入门人士面试官大

多也就是面这些,不会问太深,再深入的问题,是留给有行业经验的人的。对刚入门想入行的人,知道上面这些,再

写写类似Word Count(大数据版的helloworld),之类的有个实际概念,就可以找公司面着玩看了。

其他东西可以都了解个皮毛,跟上社群的演进。大数据更多是工程的东西,不是那么学术,多看看比深挖一个对初学

者更有好处。每个工具被发明,都是解决一个特定问题的,大数据没有一个产品是万能的,都是解决某个特定问题来

的,看到新鲜事物就想想为什么需要这样的工具,背后有什么需求。

比如有了Hive为什么facebook还要搞Presto;为什么Hadoop 2.0要做Yarn。看的时候多想想这个,视野就会更开阔。 建议如果想深入学习,没有什么比找个真的做相关行业的公司来的靠谱了。工程的东西,尤其是这样新鲜出炉的工程

领域,光看书看资料是没有任何用处的,你很难了解每个技术背后的关键,也很难了解实践中会遇到的问题。我之前

打杂过的实验室,到处找客户免费用他们的产品,每个出去的学生都会义务跟雇主推荐实验室的产品,为什么,因为

没有真的在PB级别的数据上跑,你就不知道哪里设计有问题。你深入看一个项目,就会发现,其实用得技术没什么新

鲜深奥的,比如你看Hive或者Presto,会发现用到的技术,在Query引擎领域只能算是入门级的知识,传统数据库厂

商都用了几十年了。真正好玩的是,每个Feature设计是如何切入大数据这个背景的。

所以说,没有比找一家公司真的干一段时间更能让你了解大数据的了。当然请别被忽悠去拿大数据做噱头的公司了。

现在有些公司招聘,就算不用hadoop也会往上写,反正去了老板会说,现在数据不够,以后肯定会需要Hadoop的。

以上都是关于平台方向的,数据方向的我完全不懂。

大数据学习群:716581014 大数据时代,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数

据挖掘,AI等大数据内容分享交流。不定期举办线上线下大数据内容分享活动。同时有R语言,Python语言mysql

Spss SAS 等知识课件和内容分享。Hadoop spark linux Hive等知识分享.

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 大数据新手的0基础学习路线,从菜鸟到高手的成长之路

    大数据作为一个新兴的热门行业,吸引了很多人,但是对于大数据新手来说,按照什么路线去学习,才能够学习好大数据,实现从大数据菜鸟到高手的转变。这是很多想要学习大数据...

    用户2292346
  • 0基础学习大数据,你需要了解的学习路线和方向?

    现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己?

    用户2292346
  • java程序员5个月业余时间学习大数据路径

    我自己建的大数据学习交流群:199427210,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软...

    用户2292346
  • ML_Basic-特征预处理操作指南

    主要是删除原始数据集中无关的数据、重复的数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理异常值缺失值等操作

    Sam Gor
  • 初识-大数据

    hadoop是什么? (1)Hadoop是一个开源的框架,可编写和运行分布式应用处理大规模数据,是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读...

    DataScience
  • pandas分批读取大数据集教程

    如果你的电脑内存较小那么想在本地做一些事情是很有局限性的(哭丧脸),比如想拿一个kaggle上面的竞赛来练练手,你会发现多数训练数据集都是大几G或者几十G的,自...

    砸漏
  • 凯哥讲数据中台:四大能力构建数据驱动的组织

    麦肯锡全球研究院报告表明,数据驱动的组织吸引客户的能力,保留客户的能力和盈利能力上,分别是一般企业的23倍,6倍和19倍[1]。

    凯哥
  • 大数据平台开发公司有哪些?

    大数据、区块链可以说近几年互联网非常火爆的风口了,发展真可谓是蓬勃向上。围绕大数据进行的行业变革、创新已经不仅仅是趋势,而是真实在进行中。大数据技术对各行业的重...

    用户3392176
  • 原创译文|你应该知道的18个大数据工具

    在当今的数字革命浪潮中,大数据成为公司企业分析客户行为和提供个性化定制服务的有力工具,大数据切切实实地帮助这些公司进行交叉销售,提高客户体验,并带来更多的利润。...

    灯塔大数据
  • TensorFlow最出色的30个机器学习数据集

    英语原文《 30 Largest TensorFlow Datasets for Machine Learning 》

    公众号机器学习与生成对抗网络

扫码关注云+社区

领取腾讯云代金券