Linux内核同步机制之completion

Linux内核同步机制之completion 内核编程中常见的一种模式是,在当前线程之外初始化某个活动,然后等待该活动的结束。这个活动可能是,创建一个新的内核线程或者新的用户空间进程、对一个已有进程的某个请求,或者某种类型的硬件动作,等等。在这种情况下,我们可以使用信号量来同步这两个任务。然而,内核中提供了另外一种机制——completion接口。Completion是一种轻量级的机制,他允许一个线程告诉另一个线程某个工作已经完成。

结构与初始化

Completion在内核中的实现基于等待队列(关于等待队列理论知识在前面的文章中有介绍),completion结构很简单:

struct completion {
    unsigned int done;/*用于同步的原子量*/
    wait_queue_head_t wait;/*等待事件队列*/
};

和信号量一样,初始化分为静态初始化和动态初始化两种情况: 静态初始化:

#define COMPLETION_INITIALIZER(work) \
    { 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) }

#define DECLARE_COMPLETION(work) \
    struct completion work = COMPLETION_INITIALIZER(work)

动态初始化:

static inline void init_completion(struct completion *x)
{
    x->done = 0;
    init_waitqueue_head(&x->wait);
}

可见,两种初始化都将用于同步的done原子量置位了0,后面我们会看到,该变量在wait相关函数中减一,在complete系列函数中加一。

实现

同步函数一般都成对出现,completion也不例外,我们看看最基本的两个complete和wait_for_completion函数的实现。 wait_for_completion最终由下面函数实现:

static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
    if (!x->done) {
        DECLARE_WAITQUEUE(wait, current);

        wait.flags |= WQ_FLAG_EXCLUSIVE;
        __add_wait_queue_tail(&x->wait, &wait);
        do {
            if (signal_pending_state(state, current)) {
                timeout = -ERESTARTSYS;
                break;
            }
            __set_current_state(state);
            spin_unlock_irq(&x->wait.lock);
            timeout = schedule_timeout(timeout);
            spin_lock_irq(&x->wait.lock);
        } while (!x->done && timeout);
        __remove_wait_queue(&x->wait, &wait);
        if (!x->done)
            return timeout;
    }
    x->done--;
    return timeout ?: 1;
}

wait_for_completion最终由下面函数实现:

static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
    if (!x->done) {
        DECLARE_WAITQUEUE(wait, current);

        wait.flags |= WQ_FLAG_EXCLUSIVE;
        __add_wait_queue_tail(&x->wait, &wait);
        do {
            if (signal_pending_state(state, current)) {
                timeout = -ERESTARTSYS;
                break;
            }
            __set_current_state(state);
            spin_unlock_irq(&x->wait.lock);
            timeout = schedule_timeout(timeout);
            spin_lock_irq(&x->wait.lock);
        } while (!x->done && timeout);
        __remove_wait_queue(&x->wait, &wait);
        if (!x->done)
            return timeout;
    }
    x->done--;
    return timeout ?: 1;
}

而complete实现如下:

void complete(struct completion *x)  
{  
    unsigned long flags;  
  
    spin_lock_irqsave(&x->wait.lock, flags);  
    x->done++;  
    __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);  
    spin_unlock_irqrestore(&x->wait.lock, flags);  
}  

不看内核实现的源代码我们也能想到他的实现,不外乎在wait函数中循环等待done变为可用(正),而另一边的complete函数为唤醒函数,当然是将done加一,唤醒待处理的函数。是的,从上面的代码看到,和我们想的一样。内核也是这样做的。

运用

运用LDD3中的例子:

#include <linux/module.h>
#include <linux/init.h>

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/completion.h>

MODULE_LICENSE("GPL");

static int complete_major=250;
DECLARE_COMPLETION(comp);

ssize_t complete_read(struct file *filp,char __user *buf,size_t count,loff_t *pos)
{
    printk(KERN_ERR "process %i (%s) going to sleep\n",current->pid,current->comm);
    wait_for_completion(&comp);
    printk(KERN_ERR "awoken %i (%s)\n",current->pid,current->comm);
    return 0;
}

ssize_t complete_write(struct file *filp,const char __user *buf,size_t count,loff_t *pos)
{
    printk(KERN_ERR "process %i (%s) awakening the readers...\n",current->pid,current->comm);
    complete(&comp);
    return count;
}

struct file_operations complete_fops={
    .owner=THIS_MODULE,
    .read=complete_read,
    .write=complete_write,
};

int complete_init(void)
{
    int result;
    result=register_chrdev(complete_major,"complete",&complete_fops);
    if(result<0)
        return result;
    if(complete_major==0)
        complete_major=result;
    return 0;
}
void complete_cleanup(void)
{
    unregister_chrdev(complete_major,"complete");
}
module_init(complete_init);
module_exit(complete_cleanup);

测试步骤:

  1. mknod /dev/complete创建complete节点,在linux上驱动程序需要手动创建文件节点。
  2. insmod complete.ko 插入驱动模块,这里要注意的是,因为我们的代码中是手动分配的设备号,很可能被系统已经使用了,所以如果出现这种情况,查看/proc/devices文件。找一个没有被使用的设备号。
  3. cat /dev/complete 用于读该设备,调用设备的读函数
  4. 打开另一个终端输入 echo “hello” > /dev/complete 该命令用于写入该设备。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Ryan Miao

Java Web基础入门

前言 语言都是相通的,只要搞清楚概念后就可以编写代码了。而概念是需要学习成本的。 Java基础 不用看《编程思想》,基础语法看 http://www.runo...

2537
来自专栏用户2442861的专栏

Python标准模块logging

http://blog.csdn.net/fxjtoday/article/details/6307285

491
来自专栏我和PYTHON有个约会

Django来敲门~第一部分【5.1.项目配置settings.py详解】

我们创建好了一个Python项目(mysite/)之后,需要在项目中添加模块应用(polls/),在模块应用中添加处理功能逻辑,如添加模块中的视图处理函数(po...

743
来自专栏Java3y

纳税服务系统四(角色模块)【角色与权限、角色与用户】

需求分析 我们直接来看看原型图,看看需求是怎么样的: ? 这里写图片描述 ? 这里写图片描述 我们看到上图,就会发现角色模块主要还是CRUD,唯一不同的就是它不...

5578
来自专栏Java后端技术

Java发送邮件初窥

  最近朋友的公司有用到这个功能,之前对这一块也不是很熟悉,就和他一起解决出现的异常的同时,也初窥一下使用Apache Common Email组件进行邮件发送...

782
来自专栏SpringBoot 核心技术

第四十五章:基于SpringBoot 设计业务逻辑异常统一处理

3024
来自专栏码农笔录

网站调用支付宝进行支付-Java后台调用支付宝支付

1353
来自专栏IT 指南者专栏

MyBatis 框架之基础初识

? 1、什么是 MyBatis MyBatis 本是 apache 的一个开源项目 iBatis,后改名为 MyBatis,它 是一个优秀的持久层框架,对 ...

2757
来自专栏日常分享

JavaWeb 基于Session的用户登陆注销实现

  通过Session来存储用户的部分登陆信息来验证用户是否在线,这应该时最容易实现的一种Web端方案,本文以SSM(Spring、SpringMVC、myBa...

1661
来自专栏好好学java的技术栈

SpringBoot 使用Swagger2打造在线接口文档(附源代码)

想必很多小伙伴都曾经使用过Swagger,但是打开UI界面之后,却是下面这样的画风,纯英文的界面并不太友好,作为国人还是习惯中文界面。

1001

扫码关注云+社区