Linux内核同步机制之completion

Linux内核同步机制之completion 内核编程中常见的一种模式是,在当前线程之外初始化某个活动,然后等待该活动的结束。这个活动可能是,创建一个新的内核线程或者新的用户空间进程、对一个已有进程的某个请求,或者某种类型的硬件动作,等等。在这种情况下,我们可以使用信号量来同步这两个任务。然而,内核中提供了另外一种机制——completion接口。Completion是一种轻量级的机制,他允许一个线程告诉另一个线程某个工作已经完成。

结构与初始化

Completion在内核中的实现基于等待队列(关于等待队列理论知识在前面的文章中有介绍),completion结构很简单:

struct completion {
    unsigned int done;/*用于同步的原子量*/
    wait_queue_head_t wait;/*等待事件队列*/
};

和信号量一样,初始化分为静态初始化和动态初始化两种情况: 静态初始化:

#define COMPLETION_INITIALIZER(work) \
    { 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) }

#define DECLARE_COMPLETION(work) \
    struct completion work = COMPLETION_INITIALIZER(work)

动态初始化:

static inline void init_completion(struct completion *x)
{
    x->done = 0;
    init_waitqueue_head(&x->wait);
}

可见,两种初始化都将用于同步的done原子量置位了0,后面我们会看到,该变量在wait相关函数中减一,在complete系列函数中加一。

实现

同步函数一般都成对出现,completion也不例外,我们看看最基本的两个complete和wait_for_completion函数的实现。 wait_for_completion最终由下面函数实现:

static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
    if (!x->done) {
        DECLARE_WAITQUEUE(wait, current);

        wait.flags |= WQ_FLAG_EXCLUSIVE;
        __add_wait_queue_tail(&x->wait, &wait);
        do {
            if (signal_pending_state(state, current)) {
                timeout = -ERESTARTSYS;
                break;
            }
            __set_current_state(state);
            spin_unlock_irq(&x->wait.lock);
            timeout = schedule_timeout(timeout);
            spin_lock_irq(&x->wait.lock);
        } while (!x->done && timeout);
        __remove_wait_queue(&x->wait, &wait);
        if (!x->done)
            return timeout;
    }
    x->done--;
    return timeout ?: 1;
}

wait_for_completion最终由下面函数实现:

static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
    if (!x->done) {
        DECLARE_WAITQUEUE(wait, current);

        wait.flags |= WQ_FLAG_EXCLUSIVE;
        __add_wait_queue_tail(&x->wait, &wait);
        do {
            if (signal_pending_state(state, current)) {
                timeout = -ERESTARTSYS;
                break;
            }
            __set_current_state(state);
            spin_unlock_irq(&x->wait.lock);
            timeout = schedule_timeout(timeout);
            spin_lock_irq(&x->wait.lock);
        } while (!x->done && timeout);
        __remove_wait_queue(&x->wait, &wait);
        if (!x->done)
            return timeout;
    }
    x->done--;
    return timeout ?: 1;
}

而complete实现如下:

void complete(struct completion *x)  
{  
    unsigned long flags;  
  
    spin_lock_irqsave(&x->wait.lock, flags);  
    x->done++;  
    __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);  
    spin_unlock_irqrestore(&x->wait.lock, flags);  
}  

不看内核实现的源代码我们也能想到他的实现,不外乎在wait函数中循环等待done变为可用(正),而另一边的complete函数为唤醒函数,当然是将done加一,唤醒待处理的函数。是的,从上面的代码看到,和我们想的一样。内核也是这样做的。

运用

运用LDD3中的例子:

#include <linux/module.h>
#include <linux/init.h>

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/completion.h>

MODULE_LICENSE("GPL");

static int complete_major=250;
DECLARE_COMPLETION(comp);

ssize_t complete_read(struct file *filp,char __user *buf,size_t count,loff_t *pos)
{
    printk(KERN_ERR "process %i (%s) going to sleep\n",current->pid,current->comm);
    wait_for_completion(&comp);
    printk(KERN_ERR "awoken %i (%s)\n",current->pid,current->comm);
    return 0;
}

ssize_t complete_write(struct file *filp,const char __user *buf,size_t count,loff_t *pos)
{
    printk(KERN_ERR "process %i (%s) awakening the readers...\n",current->pid,current->comm);
    complete(&comp);
    return count;
}

struct file_operations complete_fops={
    .owner=THIS_MODULE,
    .read=complete_read,
    .write=complete_write,
};

int complete_init(void)
{
    int result;
    result=register_chrdev(complete_major,"complete",&complete_fops);
    if(result<0)
        return result;
    if(complete_major==0)
        complete_major=result;
    return 0;
}
void complete_cleanup(void)
{
    unregister_chrdev(complete_major,"complete");
}
module_init(complete_init);
module_exit(complete_cleanup);

测试步骤:

  1. mknod /dev/complete创建complete节点,在linux上驱动程序需要手动创建文件节点。
  2. insmod complete.ko 插入驱动模块,这里要注意的是,因为我们的代码中是手动分配的设备号,很可能被系统已经使用了,所以如果出现这种情况,查看/proc/devices文件。找一个没有被使用的设备号。
  3. cat /dev/complete 用于读该设备,调用设备的读函数
  4. 打开另一个终端输入 echo “hello” > /dev/complete 该命令用于写入该设备。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏小特工作室

EntityFrameWork实现部分字段获取和修改(含源码)

  EntityFrameWork类库,是微软推出的ORM组件,它是基于Ado.Net的,个人感觉还是非常 好用的。以下介绍的2个功能点分别是部分字段更新和获取...

2089
来自专栏岑志军的专栏

(4)OC中消息和消息转发-02

1202
来自专栏GreenLeaves

C# (类型、对象、线程栈和托管堆)在运行时的相互关系

  在介绍运行时的关系之前,先从一些计算机基础只是入手,如下图: ? 该图展示了已加载CLR的一个windows进程,该进程可能有多个线程,线程创建时会分配到1...

2057
来自专栏求索之路

java并发编程实战笔记(部分实战未看,老旧章节跳过)

终于把这本经典的Java并发书看完了,虽然之前看的Thinking in Java和Effective Java里面都有并发的章节,但是这本书讲的更加深入,并...

38910
来自专栏飞总聊IT

总结一下SQL NULL吧

这篇文章主要回答网友姜锐(森原)。 网上并没有太好的文章总结NULL,比较有效的办法是自己去读SQL标准了。通常SQL98最重要。 我总结一下NULL在标准里...

30011
来自专栏企鹅号快讯

Python的线程

本文是基于Py2.X 线程 多任务可以由多进程完成,也可以由一个进程内的多线程完成。 我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程。 多线程类似...

1848
来自专栏JAVA技术zhai

干货:Java并发编程必懂知识点解析(内附面试题)

2395
来自专栏互联网大杂烩

小米面试经历

他是看了我写了一篇这样的博客才问的,可惜我都忘了自己写了啥!吃亏了,博客太久了,都忘记看了。链接如下: http://blog.csdn.net/zpdrea...

762
来自专栏不止是前端

从实现一个Promise说起

1253
来自专栏Python攻城狮

Python系统编程-进程1.进程1.多任务的引入2.多任务的概念

有很多的场景中的事情是同时进行的,比如开车的时候手和脚共同来驾驶汽车,再比如唱歌跳舞也是同时进行的;

753

扫码关注云+社区