深度学习与神经网络:基于自建手写字体数据集上的模型测试

在上一篇文章中,我们使用mnist数据集去做了一个识别的小型神经网络,在今天的这篇文章里,我们将要通过使用自建数据集去检验上一篇文章的模型,从而真正的可以去应用神经网络.

先解决上一篇文章中一些不完美的地方:

在上一篇文章的backward.py中,我们训练神经网络时,如果中途遇到一些事情,想要结束,回过头来再重新开始的话,我们的模型还得需要从第一步一点点开始算,尽管我们已经保存了模型,但是没有用上,这样很不好.而现在我们给我们的模型加上”断点续训”的功能.

首先:先上代码:

在这里我们要用到的是:tf.train.get_checkpoint_state()和saver.restore()这两个函数:

第一个函数的完整格式应该是这样:

tf.train.get_checkpoint_state(checkpoint_dir,latest_filename=None)

这个模型说的是如果断点文件夹里含有这个有效的断点状态文件,那就返回这个文件.

其中checkpoint_dir说的是存储断点的目录,latest_filename=None指的是断点的可选名称,我们默认一般是”checkpoint”.

第二个函数的完整格式应该是这样:

saver.restore(sess, ckpt.model_checkpoint_path)

这个模型说的是恢复当前的会话,把从ckpt中恢复的结果加载到当前的会话中.

sess说的是现在的会话,而ckpt.model_checkpoint_path说的是模型的路径.

就这样,加上上述的代码后,我们就可以实现”断点续训”功能.

说回正题:那我们如何输入真实图片去输出预测结果?

想到我们使用的mnist数据集,数据集中的图片为标准的28*28的黑白文件,并且每个文件的输出为10个可能性概率所构成的一维数组.(十个可能性概率),数组中最大的那个元素所对应的索引号就是预测的结果。

因此我们自己的真实图片需要自己处理一下,使得我们自己的图片来符合模型的要求.

具体操作应该结合代码一起说说:

在这里我们的关键处理:

我们的任务主要是由两个函数构成:

1:testPicArr = pre_pic(testPic),对自己输入的图片进行预处理

2:preValue = restore_modle(testPicArr),对符合神经网络模型要求的图片进行输入,输出预测值.

具体代码如下:

pre_pic():

处理图像这一部分的逻辑比较简单,这里我们要用到PIL这个库.这个库的功能极其丰富,有兴趣的同学可以自己学习下.

代码的处理过程;

(1)模型的要求是黑底白字,但输入的图是白底黑字,所以需要对每个像素点 的值改为 255 减去原值以得到互补的反色。

(2)对图片进行二值化处理,从而降低噪声.

(3)把图片形状拉成 1 行 784 列,并把值变为浮点型(因为要求像素点是 0-1 之间的浮点数)。

(4)接着让现有的 RGB 图从 0-255 之间的数变为 0-1 之间的浮点数。

(5)运行完成后返回到 main 函数。

restore_modle()

这里使用的是滑动平均去减少误差.最后载入我们保存的模型.最后计算求得输出 y,y 的最大值所对应的列表索引号就是预测结果。

最后我们来测试一下:

这里我自己用画板截图了几张图片进行测试:

从比例看,是远远大于28*28的,那让我们看看效果如何?

从测试的情况来看,情况比较一般,部分可以识别,但是有些不能够识别,可能是因为我训练次数太少,等训练次数多应该会有更好的结果.

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

Hinton胶囊理论代码开源,上线即受热捧

当前的深度学习理论是由GeoffreyHinton大神在2007年确立起来的,但是如今他却认为,“CNN的特征提取层与次抽样层交叉存取,将相同类型的相邻特征检测...

2086
来自专栏AI科技大本营的专栏

Hinton胶囊理论代码开源,上线即受热捧

当前的深度学习理论是由Geoffrey Hinton大神在2007年确立起来的,但是如今他却认为,“CNN的特征提取层与次抽样层交叉存取,将相同类型的相邻特征检...

2959
来自专栏瓜大三哥

基于FPGA的非线性滤波器(四)

基于FPGA的非线性滤波器(四) 之并行全比较排序模块设计 2.sort_2d模块设计 对于二维运算,采用同样的思路来处理,整个计算步骤如下: (1)计算一维行...

2299
来自专栏机器学习算法工程师

分布式TensorFlow入门教程

深度学习在各个领域实现突破的一部分原因是我们使用了更多的数据(大数据)来训练更复杂的模型(深度神经网络),并且可以利用一些高性能并行计算设备如GPU和FPGA来...

3083
来自专栏大数据智能实战

facebook Faiss的基本使用示例(逐步深入)

针对上一篇文章,安装完毕之后,可以对faiss进行基本的案例学习,具体步骤如下: step1:构造实验数据 ? step2:为向量集构建IndexFlatL2索...

1K5
来自专栏ATYUN订阅号

ChainerCV: 一个用于深度学习的计算机视觉库

ChainerCV是一个基于Chainer用于训练和运行计算机视觉任务的神经网络工具。它涵盖了计算机视觉模型的高质量实现,以及开展计算机视觉研究的必备工具集。 ...

4557
来自专栏Deep learning进阶路

caffe随记(三) --- solver 简析

1、概述 solver算是caffe中比较核心的一个概念,在我们训练train我们的网络时,就必须要带上这个参数, 如下例是我要对Lenet进行训练的时候要调...

3830
来自专栏AI研习社

Github 项目推荐 | Basel Face Model 2017 完全参数化人脸

本软件可以从 Basel Face Model 2017 里生成完全参数化的人脸,论文链接: https://arxiv.org/abs/1712.01619 ...

6487
来自专栏编程

隐马尔科夫模型 python 实现简单拼音输入法

关键时刻,第一时间送达! ? 在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客(...

3610
来自专栏数据和云

算法分析:Oracle 11g 中基于哈希算法对唯一值数(NDV)的估算

1 为什么引入新 NDV 算法 字段的统计数据是 CBO 优化器估算执行计划代价的重要依据。而字段的统计数据可以分为两类: 1. 概要统计数据:如 NDV 字段...

3637

扫码关注云+社区

领取腾讯云代金券