前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >小米开源移动端深度学习框架MACE,自主研发,专为IoT设备优化

小米开源移动端深度学习框架MACE,自主研发,专为IoT设备优化

作者头像
量子位
发布2018-07-20 09:33:21
1K0
发布2018-07-20 09:33:21
举报
文章被收录于专栏:量子位
允中 发自 凹非寺 量子位 报道 | 公众号 QbitAI

这可能是小米目前为止最重要的AI大动作。

昨天(6月28日),在2018开源中国开源世界高峰论坛现场,小米人工智能与云平台副总裁崔宝秋对外宣布,将正式开源小米自研的移动端深度学习框架Mobile AI Compute Engine,简称MACE

小米方面称,MACE是专门为移动设备优化的深度学习模型预测框架。

近年来,随着移动互联网的深入发展和IoT智能设备的普及,以及用户对智能性,低延迟和隐私保护的诉求变得越来越高,移动设备上的离线深度学习应用变得越来越普遍。

于是MACE从设计之初,便针对移动设备的特点进行了专门的优化。

针对移动设备优化

涉及6个方面:

速度:对于放在移动端进行计算的模型,一般对整体的预测延迟有着非常高的要求。在框架底层,针对ARM CPU进行了NEON指令级优化,针对移动端GPU,实现了高效的OpenCL内核代码。针对高通DSP,集成了nnlib计算库进行HVX加速。同时在算法层面,采用Winograd算法对卷积进行加速。

功耗:移动端对功耗非常敏感,框架针对ARM处理器的big.LITTLE架构,提供了高性能,低功耗等多种组合配置。针对Adreno GPU,提供了不同的功耗性能选项,使得开发者能够对性能和功耗进行灵活的调整。

系统响应:对于GPU计算模式,框架底层对OpenCL内核自适应的进行分拆调度,保证GPU渲染任务能够更好的进行抢占调度,从而保证系统的流畅度。

初始化延迟:在实际项目中,初始化时间对用户体验至关重要,框架对此进行了针对性的优化。

内存占用:通过对模型的算子进行依赖分析,引入内存复用技术,大大减少了内存的占用。

模型保护:对于移动端模型,知识产权的保护往往非常重要,MACE支持将模型转换成C++代码,大大提高了逆向工程的难度。

此外,MACE支持TensorFlow和Caffe模型,提供了转换工具,可以将训练好的模型转换成专有的模型数据文件,同时还可以选择将模型转换成C++代码,支持生成动态库或者静态库,可以大大提高模型的保密性。

目前MACE已经在小米手机上的多个应用场景得到了应用,其中包括相机的人像模式,场景识别,图像超分辨率,离线翻译(即将实现)等。

随着MACE一起开源的还有MACE Model Zoo项目,目前包含了物体识别,场景语义分割,图像风格化等多个公开模型。后续会增加更多的模型,同时也欢迎社区开发者共同参与。

以下是用MACE Model Zoo中的fast style transfer(快速风格迁移)模型在手机端生成的风格化图片。

传送门

关于该项目的Android的示例程序,可以下载编译好的APK文件进行安装(下载地址:https://cnbj1.fds.api.xiaomi.com/mace/demo/mace_android_demo.apk)。

MACE项目地址: https://github.com/XiaoMi/mace

MACE Model Zoo项目地址: https://github.com/XiaoMi/mace-models

作者系网易新闻·网易号“各有态度”签约作者
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-06-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 针对移动设备优化
  • 传送门
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档