[计算机视觉论文速递] 2018-06-08

导言

这篇文章有4篇论文速递信息,涉及胶囊网络、迁移学习、优化CNN和手指检测等方向(含一篇NIPS 2017、一篇ICMR 2018和一篇 VCIP 2017)。

编辑: Amusi

校稿: Amusi

前戏

Amusi 将日常整理的论文都会同步发布到 daily-paper-computer-vision 上。名字有点露骨,还请见谅。喜欢的童鞋,欢迎star、fork和pull。

直接点击“阅读全文”即可访问daily-paper-computer-vision

link: https://github.com/amusi/daily-paper-computer-vision

Capusle Networks & Transfer Learning

《Capsule networks for low-data transfer learning》

arXiv 2018

The full memo architecture

Abstract:我们提出了一个基于胶囊网络(capsule network)的框架,用于通过少数例子将学习推广到新数据。使用生成(generative)和非生成胶囊网络与中间路由(intermediate routing),我们能够生成比相似卷积神经网络快25倍的新信息。我们在缺少一位数字的multiMNIST数据集上训练网络。在网络达到其最大精度后,我们将1-100个缺失数字的样本放入训练集,并测量返回到可比较的准确度所需的批次数。然后我们讨论胶囊网络带来的低数据传输学习的改进,并为胶囊网络研究提出未来的发展方向。

arXiv:https://arxiv.org/abs/1804.10172

注:最近感觉Capsule Network不是很火了~

CNN

《Competitive Learning Enriches Learning Representation and Accelerates the Fine-tuning of CNNs》

NIPS 2017

(a) Network structure of a simple CNN

(b) BP learning of conventional CNN (control condition).

(c)Competitive learning.

Abstract:在这项研究中,我们提出将竞争性学习整合到卷积神经网络(CNN)中以改善表示学习和微调(fine-tuning)效率。传统的CNN使用反向传播学习,它可以通过区分任务实现强大的表示学习。但是,它需要大量标记数据,并且标记数据的获取比未标记数据的难得多。因此,有效使用未标记的数据对于DNN越来越重要。为了解决这个问题,我们将无监督的竞争学习引入卷积层,并利用未标记的数据进行有效的表示学习。使用玩具(toy)模型的验证实验的结果表明,强表示(strong representation )学习使用未标记的数据有效地将图像的基础提取到卷积滤波器中,并且加快了后续监督的反向传播学习的微调的速度。当滤波器数量足够大时,杠杆作用更明显,并且在这种情况下,在微调的初始阶段误差率急剧下降。因此,所提出的方法扩大了CNN中的滤波器的数量,并且使得更加详细和通用的表示。它不仅可以提供一个深层广泛的神经网络的可能性。

arXiv:https://arxiv.org/abs/1804.09859

Visual Estimation

《Visual Estimation of Building Condition with Patch-level ConvNets》

ICMR 2018

Visual appearance of the building elements roof (top row), facade (middle row), and window (bottom row) for the conditions very good, good, and poor.

Abstract:建筑物的状况(condition)是房地产估价的重要因素。目前,房地产估价师对房地产估价具有一定的主观性。我们提出了一种新颖的基于视觉的方法,用于从建筑物的外部视图评估建筑物状况。为此,我们开发了一种多尺度基于patch模式的提取方法,并将其与卷积神经网络相结合,从视觉线索估计建筑物状况。我们的评估显示,视觉估计的建筑条件可以作为评估师对状况估计的proxy。

arXiv:https://arxiv.org/abs/1804.10113

Finger Detection

《Two-Stream Binocular Network: Accurate Near Field Finger Detection Based On Binocular Images》

VCIP 2017

The pipeline of TSBnet

Abstract:指尖检测(Fingertip )在人机交互中起着重要作用。先前的工作是将双目(binocular)图像转换为深度图像。 然后使用基于深度的手姿势估计方法来预测指尖的三维位置。与以前的工作不同,我们提出了一个新的框架,名为双流双目网络(TSBnet),直接从双目图像中检测指尖。TSBnet首先共享左右图像低级特征的卷积图层。然后分别提取双流卷积网络中的高层特征。此外,我们添加了一个新层:双目距离测量层,以提高我们模型的性能。为了验证我们的方案,我们构建了一个双目手图像数据集,包含训练集中的约117k对图像和测试集中的10k对图像。 我们的方法在我们的测试装置上实现了10.9mm的平均误差,比以前的工作性能要好5.9mm(相对35.1%)。

arXiv:https://arxiv.org/abs/1804.10160

IEEE:https://ieeexplore.ieee.org/abstract/document/8305146/

Datasets:https://sites.google.com/view/thuhand17

原文发布于微信公众号 - CVer(CVerNews)

原文发表时间:2018-06-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【深度学习RNN/LSTM中文讲义】循环神经网络详解,复旦邱锡鹏老师《神经网络与深度学习》报告分享03(附pdf下载)

【导读】复旦大学副教授、博士生导师、开源自然语言处理工具FudanNLP的主要开发者邱锡鹏(http://nlp.fudan.edu.cn/xpqiu/)老师撰...

2.2K8
来自专栏机器之心

学界 | Bengio等人提出图注意网络架构GAT,可处理复杂结构图

3298
来自专栏AI科技大本营的专栏

入门 | 零基础入门深度学习——线性单元和梯度下降

为了帮助编程爱好者,从零开始入门,AI100特别精选了韩炳涛所著《零基础入门深度学习》系列文章,以下Enjoy! 作者 | 韩炳涛 无论即将到来的是大数据时代还...

4158
来自专栏企鹅号快讯

人工智能开发者必须知道的十种深度学习方法!

源| AI 科技评论文| Camel 不管是AI也好,其他学科也好,学习、研究的过程中不断反思学科的历史,总结学科的发展现状,找出最重要的理念,总能让人能“吾道...

39313
来自专栏机器人网

具有启发性的十种深度学习方法

 不管是AI也好,其他学科也好,学习、研究的过程中不断反思学科的历史,总结学科的发展现状,找出重要的理念,总能让人能“吾道一以贯之”。软件工程师James Le...

36311
来自专栏智能算法

亚像素边缘的直线及圆弧的基元分割

从20世纪70年代起就有不少专家提出了一些有效的亚像素边缘定位的方法,如插值法、灰度矩法和一些组合的算法等。本文在前辈的基础上描述一种图像亚像素边缘检测方法,...

2986
来自专栏大数据挖掘DT机器学习

深度学习大神都推荐入门必须读完这9篇论文

Introduction 卷积神经网络CNN,虽然它听起来就像是生物学、数学和计算机的奇怪混杂产物,但在近些年的机器视觉领域,它是最具影响力...

4895
来自专栏机器之心

深度 | 一文介绍3篇无需Proposal的实例分割论文

选自Medium 作者:Bar Vinograd 机器之心编译 参与:Nurhachu Null、黄小天 本文解析了实例分割领域中的三篇论文,它们不同于主流的基...

3825
来自专栏AI科技评论

学界 | 超越何恺明等组归一化 Group Normalization,港中文团队提出自适配归一化取得突破

AI 科技评论:港中文最新论文研究表明目前的深度神经网络即使在人工标注的标准数据库中训练(例如 ImageNet),性能也会出现剧烈波动。这种情况在使用少批量数...

1221
来自专栏计算机视觉战队

ECCV-2018最佼佼者的目标检测算法

转眼间,离上次9月3日已有9天的时间,好久没有将最新最好的“干货”分享给大家,让大家一起在学习群里讨论最新技术,那今天我给大家带来ECCV-2018年最优pap...

1.5K3

扫码关注云+社区