[计算机视觉论文速递] 2018-06-11

导言

这篇文章有4篇论文速递信息,涉及CNN pruning、新的人脸识别数据集、森林树木分类和交通标志检测等方向。

编辑: Amusi

校稿: Amusi

前戏

Amusi 将日常整理的论文都会同步发布到 daily-paper-computer-vision 上。名字有点露骨,还请见谅。喜欢的童鞋,欢迎star、fork和pull。

直接点击“阅读全文”即可访问daily-paper-computer-vision

link: https://github.com/amusi/daily-paper-computer-vision

CNN

《Accelerator-Aware Pruning for Convolutional Neural Networks》

arXiv 2018

submitted to IEEE Transactions on Circuits and Systems for Video

Typical PE structures: (a) MWMA and (b) MWSA.

Process of a channel-axis-parallel CNN accelerator

Abstract:卷积神经网络在计算机视觉任务中表现出巨大的性能,但是它们过多的权重和运算阻止了它们在嵌入式环境中被采用。其中一个解决方案涉及修剪(pruning),其中一些不重要的权重被迫为零。已经提出了许多修剪方案,但主要集中在修剪权重的数目上。之前的修剪方案几乎不考虑ASIC或FPGA加速器体系结构。当修剪后的网络运行在加速器上时,缺乏体系结构考虑会导致一些低效率问题,包括内部缓冲区失调和负载不平衡。本文提出了反映加速器体系结构的新修剪方案。在所提出的方案中,执行修剪使得对于与同时取得的激活相对应的每个权重组保留相同数量的权重。通过这种方式,修剪方案解决了无效率问题。即使受到约束,所提出的修剪方案也达到了与先前的无约束修剪方案类似的修剪比例,不仅在AlexNet和VGG16中,而且在像ResNet这样的最先进的非常深的网络中。此外,所提出的方案在已经修剪通道的细长网络中展现出可比的修剪比率。除了提高以前稀疏加速器的效率外,还将显示所提出的修剪方案可用于减少稀疏加速器的逻辑复杂度。

arXiv:https://arxiv.org/abs/1804.09862

Face

《Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results》

arXiv 2018

Sample annotated images from the proposed UFDD dataset

Abstract:人脸识别在过去几年中取得了巨大的进步,每年都有新的里程碑被超越。虽然诸如尺度(scale),姿态(pose),外观上的巨大变化等许多挑战已被成功解决,但仍存在若干问题,这些问题未被现有方法或数据集专门捕获。在这项工作中,我们确定需要研究界关注的下一组挑战,并收集涉及这些问题的新图像数据集,例如基于差的天气,运动模糊,焦点模糊等。我们证明,在最先进的探测器和真实世界需求的性能方面存在相当大的差距。因此,为了进一步加强对无约束人脸检测的研究,我们提出了一种新的带注释的无约束人脸检测数据集(UFDD),其中有几个挑战和基准最近的方法。此外,我们对这些方法的结果和失败案例进行了深入分析。数据集以及baseline 结果将在适当的时候公布。

arXiv:https://arxiv.org/abs/1804.10275

Image Classification

《Automatic classification of trees using a UAV onboard camera and deep learning》

arXiv 2018

Extracted each class sample

Abstract:使用遥感数据自动分类树木一直是许多科学家和土地使用管理者的梦想。最近,无人驾驶飞行器(UAV)一直被认为是遥感森林的一种易于使用且具有成本效益的工具,深度学习因其在机器视觉方面的能力而备受关注。在这项研究中,我们使用商业的无人机和公开数据进行深度学习,我们构建了用于树木自动分类的机器视觉系统。在我们的方法中,我们将森林的无人机摄影图像分割成单独的树冠(tree crowns)并进行基于对象的深度学习。结果,该系统能够以89.0%的准确度对7种树木类型进行分类。该性能值得注意,因为我们只使用标准无人机的基本RGB图像。相比之下,大多数以前的研究使用昂贵的硬件,如多光谱成像器来提高性能。这一结果意味着我们的方法有可能以具有成本效益的方式对单个树木进行分类。这可以成为许多森林研究人员和管理人员的有用工具。

arXiv:https://arxiv.org/abs/1804.10390

Traffic Sign Detection

《Localized Traffic Sign Detection with Multi-scale Deconvolution Networks》

arXiv 2018

Convolutional Residual Network(CRN)

Multiple traffic signs in the object image

Abstract:通过深度学习进行有效的交通标志检测对自动驾驶起着至关重要的作用。 但是,不同的国家有不同的交通标志集合,使得本地化的交通标志识别模型训练成为一项繁琐而艰巨的任务。为解决计算复杂算法需要花费大量时间和检测局部交通标志的模糊和亚像素图像的比率低的问题,我们提出了多尺度卷积网络(Multi-Scale Deconvolution Networks,MDN),它将多尺度卷积神经网络 解卷积子网络,导致高效可靠的本地化交通标志识别模型的培训。与中国交通标志数据集(CTSD)和德国交通标志基准(GTSRB)等本地化交通标志基准的经典算法相比,所提出的MDN是有效的。

arXiv:https://arxiv.org/abs/1804.10428

【论文速递】专题回顾

[1] [计算机视觉论文速递] 2018-06-08

[2] [计算机视觉论文速递] 2018-06-06

[3] [计算机视觉论文速递] 2018-05-29

原文发布于微信公众号 - CVer(CVerNews)

原文发表时间:2018-06-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

强化学习初探 - 从多臂老虎机问题说起

▌背景和问题定义 ---- ---- 2018年我开始了机器学习相关领域的博士生涯,相比于目前流行的深度学习以及类似的需要大量训练数据来生成模型的监督学习方法,...

7899
来自专栏机器之心

学界 | 5.5%语音识别词错率究竟如何炼成?IBM发布相关研究论文

选自arXiv 机器之心编译 参与:晏奇、吴攀 语音识别是人工智能领域所研究的核心问题之一,研究者一直以来都在竞相努力以期能首先达到比肩人类的里程碑。去年十月,...

36112
来自专栏CSDN技术头条

自然语言处理技术(NLP)在推荐系统中的应用

个性化推荐是大数据时代不可或缺的技术,在电商、信息分发、计算广告、互联网金融等领域都起着重要的作用。具体来讲,个性化推荐在流量高效利用、信息高效分发、提升用户体...

6919
来自专栏数据科学与人工智能

【数据挖掘】详细解释数据挖掘中的 10 大算法(下)

上一篇中作者解释了 C4.5算法、K 均值聚类算法、支持向量机、Apriori 关联算法、EM 算法,下篇继续解释 PageRank 算法、AdaBoost 迭...

2856
来自专栏新智元

【干货】18个技巧实战深度学习,资深研究员的血泪教训

【新智元导读】资深工程师 Nikolas Markou 回顾他多年来在一线使用深度学习的经验,总结出 18 个能让你充分发挥深度神经网络潜力的诀窍,简洁明了,直...

3397
来自专栏机器之心

学界 | ReQuest: 使用问答数据产生实体关系抽取的间接监督

选自 arXiv 机器之心编译 参与:Nurhachu Null、李泽南 在这篇伊利诺伊大学、南加州大学与上海交大合作的 WSDM 2018 论文中,研究人员提...

35811
来自专栏人工智能头条

八大步骤,用机器学习解决90%的NLP问题

1753
来自专栏人工智能LeadAI

Assignment 2 | 斯坦福CS231n-深度学习与计算机视觉课程

该笔记是以斯坦福cs231n课程的python编程任务为主线,展开对该课程主要内容的理解和部分数学推导。这篇文章是第二篇。 ? CS231n简介 CS231n的...

5966
来自专栏机器学习算法工程师

浅析深度学习在实体识别和关系抽取中的应用

实体识别 作者:蒙 康 编辑:黄俊嘉 命名实体识别 1 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中...

6404
来自专栏小小挖掘机

推荐系统遇上深度学习(十八)--探秘阿里之深度兴趣网络(DIN)浅析及实现

阿里近几年公开的推荐领域算法有许多,既有传统领域的探索如MLR算法,还有深度学习领域的探索如entire -space multi-task model,Dee...

3632

扫码关注云+社区

领取腾讯云代金券