[计算机视觉论文速递] 2018-06-29 人脸专场

导言

这篇文章有4篇论文速递,都是人脸方向,包括人脸识别、人脸表情识别、人脸情绪分类和人脸属性预测。其中一篇是CVPR 2018 workshop。

编辑: Amusi

校稿: Amusi

前戏

Amusi 将日常整理的论文都会同步发布到 daily-paper-computer-vision 上。名字有点露骨,还请见谅。喜欢的童鞋,欢迎star、fork和pull。

直接点击“阅读全文”即可访问daily-paper-computer-vision

link: https://github.com/amusi/daily-paper-computer-vision

Face

《Robust Face Recognition with Deeply Normalized Depth Images》

arXiv 2018

Flowchart of our proposed face recognition method using deeply normalized depth images

Reconstruction results of some depth images

Abstract:已经证明深度信息对于面部识别是有用的。然而,现有的基于深度图像的面部识别方法仍然受到噪声深度值和变化的姿势和表情的影响。在本文中,我们提出了一种新的方法,用于将面部深度图像归一化为正面姿势和中性表情(neutral expression),并从归一化的深度图像中提取鲁棒特征。该方法通过两个深度卷积神经网络(DCNN),归一化网络(NetN)和特征提取网络(NetF)来实现。给定面部深度图像,NetN首先将其转换为HHA图像,通过DCNN从该图像重建3D面部。 NetN然后从重构的3D脸部生成姿势 - 表达归一化(PEN)深度图像。 PEN深度图像最终传递给NetF,NetF通过另一个DCNN提取强大的特征表示以进行人脸识别。我们的初步评估结果证明了所提出的方法在识别具有深度图像的任意姿势和表情的面部方面的优越性。

arXiv:https://arxiv.org/abs/1805.00406

《Which Facial Expressions Can Reveal Your Gender? A Study With 3D Faces》

arXiv 2018

Male and Female Faces Examples and Extracted Features

Abstract:人类在外表和行为方面都表现出丰富的性别暗示。在计算机视觉领域,已经广泛研究了面部外观的性别线索(cue),而基于面部行为的性别识别研究仍然很少。在这项工作中,我们首先证明面部表情会影响3D面部中呈现的性别模式,并且在同一表达式中训练和测试时性别识别性能会提高。此外,我们设计的实验直接提取面部表情形成的形态变化作为特征,用于基于表达的性别识别。实验结果表明,在快乐和厌恶表达中,性别可以相当准确地被识别,而惊喜和悲伤表达不会传达很多与性别相关的信息。这是文献中第一部用3D面部研究基于表达的性别分类的工作,揭示了不同类型表达中包含的性别模式的强度,即快乐,厌恶,惊喜和悲伤的表达。

arXiv:https://arxiv.org/abs/1805.00371

《I Know How You Feel: Emotion Recognition with Facial Landmarks》

CVPR WiCV workshop 2018

Our emotion recognition model in passenger detection system for autonomous cars

Abstract:对于许多计算机视觉算法而言,人类情感(human emotions)的分类仍然是一项重要且具有挑战性的任务,尤其是在人类机器人的日常生活中与人类共存的时代。当前提出的用于情绪识别的方法使用多层卷积网络来解决该任务,该网络没有明确地推断出分类阶段中的任何面部特征。在这项工作中,我们假设一种根本不同的方法来解决情绪识别任务,该方法依赖于将面部标志作为分类损失函数的一部分。为此,我们扩展了最近提出的深度对齐网络(Deep Alignment Network ,DAN),该网络在最近的面部关键点识别挑战中实现了最佳的结果,其中包含与面部特征相关的术语。 由于这个简单的修改,我们的名为EmotionalDAN的模型能够在两个具有挑战性的基准数据集上超过最先进的情感分类方法达5%。

arXiv:https://arxiv.org/abs/1805.00326

《A Deep Face Identification Network Enhanced by Facial Attributes Prediction》

arXiv 2018

Proposed CNN architecture, face identification and attribute prediction are trained jointly

Abstract:对于许多计算机视觉算法而言,人类情感(human emotions)的分类仍然是一项重要且具有挑战性的任务,尤其是在人类机器人的日常生活中与人类共存的时代。当前提出的用于情绪识别的方法使用多层卷积网络来解决该任务,该网络没有明确地推断出分类阶段中的任何面部特征。在这项工作中,我们假设一种根本不同的方法来解决情绪识别任务,该方法依赖于将面部标志作为分类损失函数的一部分。为此,我们扩展了最近提出的深度对齐网络(Deep Alignment Network ,DAN),该网络在最近的面部关键点识别挑战中实现了最佳的结果,其中包含与面部特征相关的术语。 由于这个简单的修改,我们的名为EmotionalDAN的模型能够在两个具有挑战性的基准数据集上超过最先进的情感分类方法达5%。

arXiv:https://arxiv.org/abs/1805.00326

原文发布于微信公众号 - CVer(CVerNews)

原文发表时间:2018-06-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

春节充电系列:李宏毅2017机器学习课程学习笔记01之简介

【导读】春节将近,在亲友相聚之余也不忘给自己充充电。为此,专知内容组给大家带来了台大李宏毅老师的2017年机器学习课程系列学习笔记。今天我们先来看一下该系列课程...

48513
来自专栏机器之心

AAAI 2018 | 如何高效进行大规模分类?港中文联合商汤提出新方法

3758
来自专栏AI科技大本营的专栏

技术 | 入门机器学习必须知道的6件事,你可未必都了然于心了

翻译 | AI科技大本营(rgznai100) 参与 | shawn 过去两年中,我曾经多次折服于机器学习的魅力。但每当我决定尝试新事物时,经常会不得不重新学习...

3659
来自专栏新智元

以色列神秘AI研究力量:深度学习的四大失败

【新智元导读】深度学习力量强大,但无论是理论研究者还是实际从业者,了解深度学习的局限也是十分重要的。耶路撒冷希伯来大学的一组研究人员,其中有两位任职于 Mobi...

4338
来自专栏专知

【干货】ICCV2017 PoseTrack challenge优异方法:基于检测和跟踪的视频中人体姿态估计

【导读】近日,针对视频中场景复杂、人物众多等困难挑战,来自Facebook、CMU和达特茅斯学院的研究人员提出了一种新颖的基于检测和跟踪的视频中人体姿态估计方法...

5766
来自专栏AI传送门

股票预测,自动翻译,你想要的它都能做——RNN算法探索之旅(2)

1314
来自专栏目标检测和深度学习

一门面向所有人的人工智能公开课:MIT 6.S191,深度学习入门

选自Medium 机器之心编译 参与:黄小天、李泽南 对初学者来说,有没有易于上手,使用流行神经网络框架进行教学的深度学习课程?近日,麻省理工学院(MIT)正式...

35613
来自专栏机器之心

专栏 | 阿里 AI LAB ICCV 2017 录用论文详解:语言卷积神经网络应用于图像标题生成的经验学习

3577
来自专栏小小挖掘机

从贝叶斯角度看L1及L2正则化

首先写一下为什么会写这个吧,之前在看linUCB的一篇博客的时候,看到了这么一段话:

1411
来自专栏机器之心

CVPR 2018 | 哈工大提出STRCF:克服遮挡和大幅形变的实时视觉追踪算法

选自arXiv 作者:Feng Li等 机器之心编译 参与:Nurhachu Null、刘晓坤 视觉追踪在多样本的历史追踪结果中学习时,可能遭遇过拟合问题,并在...

3986

扫码关注云+社区