专栏首页AI科技大本营的专栏Google AI提新型神经网络,对神经元进行高精度自动重建

Google AI提新型神经网络,对神经元进行高精度自动重建

编译 | Just

7 月 16 日, Google AI 发布了一篇博客称,Google Research 部门和 Max Planck 研究所合作提出了一种新型的递归神经网络,它可以提升连接组数据进行自动分析的准确性,相比先前深度学习技术的准确性是数量级的提升。

Jeff Dean 随后也在 Twitter 上转发评价称,“使用人工神经网络重建真实神经元的连接性研究真的很酷。”

▌数量级提升了连接组数据自动分析的准确性

根据维基百科的定义,连接组学(Connectomics)绘制与研究神经连接组(connectomes)是一种刻画有机体神经系统(尤其是脑和眼)的连接方式的完整线路图。由于这些结构极其复杂,高效筛选的神经成像和组织学方法被用于提高绘制神经连接线路图的速度、效率和精度。

连接组学的目的是全面映射神经系统中的神经元网络的结构,以便更好地理解大脑是如何运作的。这个过程需要以纳米分辨率(通常使用电子显微镜)对脑组织进行 3D 成像,然后分析所得到的图像数据,以追踪大脑的神经轴突,并识别单个突触连接。

由于成像的高分辨率,即使是 1 立方毫米的脑组织也可以产生超过 1000 TB 的数据。再加上这些图像中的结构比较微妙和复杂,大脑映射的主要瓶颈是自动分析这些数据,而不是获取数据本身。

Google 与 Max Plank 神经生物学研究所在《Nature Methods》中发表的“ 用泛洪填充网络高效自动重建神经元 (High-Precision Automated Reconstruction of Neurons with Flood-Filling Networks)”一文 ,则展示了一种新型的递归神经网络,如何提升连接组数据自动分析的准确性,这比先前深度学习技术是数量级的提升。

▌使用泛洪填充网络进行 3D 图像分割

在大规模电子显微镜数据中追踪神经轴突是一个图像分割问题。传统算法将该过程划分为至少两个步骤:使用边缘检测器或机器学习分类器找出神经轴突之间的边界,然后使用分水岭(watershd)或图形切割等算法将未被边界分隔的图像像素进行组合。

2015 年,他们开始尝试基于递归神经网络的替代方法,将这两个步骤统一起来。该算法在特定的像素位置播种,然后使用循环卷积神经网络不断地“填充”一个区域,该网络会预测哪些像素是与该特定像素属于同一部分。自 2015 年以来,他们一直致力于将这种新方法应用于大规模的连接组数据集,并严格量化其准确性。

分割对象的泛洪填充网络。黄点是当前焦点区域的中心; 当算法不断检查整个图像时,分割区域会不断扩展(蓝色)。

▌通过预期的运行长度测量精度

他们设计了一个叫做“预期运行长度”(ERL)的度量标准:给出大脑三维图像中随机神经元内的随机点,在犯错前,可以追踪神经元的距离。这是一个平均故障间隔时间(Mean Time Between Failures)的示例,但在这种情况下检测出的是故障之间的空间而不是时间。

对于研究人员而言,ERL 的吸引力在于,它将线性物理路径长度与算法产生的各个错误的频率联系起来,并且可以直接计算。对生物学家来说, ERL 的特定数值可以与生物学相关数量产生联系,例如神经系统不同部分的神经元平均路径长度。

蓝线表示预期运行长度(ERL)的结果。红线表示“合并率”,“合并率”指两个单独的神经轴突被错误地追踪为单个对象的频率; 非常低的合并率对于实现手动识别和纠正重建中的剩余错误很重要。

▌鸣禽的连接组学

他们使用 ERL 测量了在 100 万立方微米的斑胸草雀大脑的真实神经元数据集,发现该方法的表现好于其他应用于同一数据集的深度学习方法。

算法在追踪斑胸草雀大脑中的单个神经轴突

他们使用新的泛洪填充网络方法对斑胸草雀大脑的一小部分神经元进行分割,视频如下:

视频内容

重建一部分斑胸草雀的大脑。不同颜色表示使用填充灌溉网络自动生成的分割的不同对象。金球代表使用以前的方法自动识别的突触位置。

他们还将继续改进连接组学重建技术。为了帮助更多研究团体开发连接组学技术,他们开发了用于泛洪填充网络方法的 TensorFlow 代码,并开发了用于 3D 数据集的 Web GL 可视化软件帮助理解和改进重建结果。

相关链接:

https://ai.googleblog.com/2018/07/improving-connectomics-by-order-of.html

https://www.nature.com/articles/s41592-018-0049-4

——【完】——

本文分享自微信公众号 - AI科技大本营(rgznai100)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-07-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 全网首发 | 你以为你是高高在上的人类?别傻了,你的脑子已经被机器侵蚀很久了…(Neuralink系列编译之三)

    这两天,我们以全网最快的速度、最完整的编译,为读者带来了科技人气王Tim Urban的长篇文章《Neuralink》前两章。 其中,第一篇作为开胃汤,从历史的...

    AI科技大本营
  • 500张训练样本攻破验证码?蚂蚁金服提自监督表征学习识别方法

    导语:国际顶级会议WWW 2020将于4月20日至24日举行。始于1994年的WWW会议,主要讨论有关Web的发展,其相关技术的标准化以及这些技术对社会和文化的...

    AI科技大本营
  • 重磅 | 128篇论文,21大领域,深度学习最值得看的资源全在这了(附一键下载)

    从全局到枝干、从经典到前沿、从理论到应用、还有最新的研究...,所有你不需要的需要的,现在不需要的未来需要的,你不需要的周边小伙伴需要的...反正全都在这了。拿...

    AI科技大本营
  • 初版storm项目全流程自动化测试代码实现

      由于项目需要,写了版针对业务的自动化测试代码,主要应用场景在于由于业务日趋复杂,一些公共代码的改动,担心会影响已有业务。还没进行重写,但知识点还是不少的与大...

    用户3003813
  • Android点击视图外部,隐藏键盘 及 事件传递机制

    在做IM的时候当用户点击输入框外的区域应该隐藏 输入法键盘 或者 其他操作区域

    剑行者
  • Springboot 系列(三)Spring Boot 自动配置

    关于配置文件可以配置的内容,在 Spring Boot 官方网站已经提供了完整了配置示例和解释。

    未读代码
  • iOS运行时Runtime基础

    梧雨北辰
  • Java中equals与==区别

    (1)基本数据类型比较值:只要两个变量的值相等,即为true 注意:当基本数据类型使用“==”进行比较时,符号两边的数据必须类型兼容(类型相同或可自动类型转换...

    Vance大飞
  • 速读原著-TCP/IP(SNMP管理信息结构)

    S N M P中,数据类型并不多。在本节,我们就讨论这些数据类型,而不关心这些数据类型在实际中是如何编码的。 • I N T E G E R。一个变量虽然定义...

    cwl_java
  • 正则中re高级用法findall中的一个小坑

    看到了吧,其实在findall中如果用户添加分组的时候,其实默认显示的是用户分组的结果。为了想要显示匹配所有的内容,需要取消显示用户分组

    小闫同学啊

扫码关注云+社区

领取腾讯云代金券