专栏首页量子位Google人工智能面试·真·题(附参考答案+攻略)

Google人工智能面试·真·题(附参考答案+攻略)

安妮 栗子 发自 泽浩寺 量子位 出品 | 公众号 QbitAI

可能每个程序猿,都想过加入Google。

然而想要“应试”成功,考验的不仅仅是开发人员的编程技术,还能侧面考验着参赛者的渠道来源是否广泛、背景力量是否强大、脑洞回路是否清奇……

不过,梦是要做的,简历是要投的,说不准面试就来了呢?所以,我们需要为万一砸到头顶的面试,做好一万的准备。

前有万千过桥的应聘大军发回攻略,后有民间编程大神发现隐藏关卡……是时候来总结一份Google应聘指南了。

P.S. 这份攻略也不仅仅适用于Google(中途落榜的励志哥还被亚马逊挖走了呢~)

面前必毒(20道·真·题)

Google的技术面试流程就是各家的标配而已,先远程后现场。

面试以强度闻名,可能看看问题就想回家了。这些题目全部由Glassdoor收集统计。不过,顺便看下参考答案也是好的。

1、求导1/x。

答:-1/x2

用Python是这样。

2、画出log (x+10)曲线。

答:如图。只要把logx的图像左移10格。

用Python是这样。

3、怎样设计一次客户满意度调查?

答:第三题就这么抽象了。不知从何说起的我决定指引各位,可以在搜索引擎里查询一下:“客户满意度和客户忠诚度的计算标准”。

4、一枚硬币抛10次,得到8正2反。试析抛硬币是否公平?p值是多少?

5、接上题。10枚硬币,每一枚抛10次,结果会如何?为了抛硬币更公平,应该怎么改进?

答:小数定律或许可以帮到你。 附一个参考资料:https://medium.com/@lorenz.rumberger/i-think-a-more-advanced-answer-for-the-coin-toss-game-would-use-the-bayesian-method-569696e89271

6、解释一个非正态分布,以及如何应用。

答:不知道面试者遇到是怎样的分布。不过,上个月MIT发表了用妖娆的伽玛分布,帮助自动驾驶系统在浓雾里保持如炬目光的算法。 详情传送门:https://mp.weixin.qq.com/s?__biz=MzIzNjc1NzUzMw==&mid=2247495843&idx=4&sn=db0fcef1bc290b84ac0c185ade54cdf9&scene=21#wechat_redirect

7、为什么要用特征选择?如果两个预测因子高度相关,系数对逻辑回归有怎样的影响?系数的置信区间是多少?

答:需要处理高维数据的时候,很多模型都吃不消。特征选择可以让我们在给数据降维的同时,不损失太多信息。 参考资料传送门:https://towardsdatascience.com/why-how-and-when-to-apply-feature-selection-e9c69adfabf2

8、K-mean与高斯混合模型:K-means算法和EM算法的差别在哪里?

答:CSDN博主JpHu说,K-Means算法对数据点的聚类进行了“硬分配”,即每个数据点只属于唯一的聚类;而GMM的EM解法则基于后验概率分布,对数据点进行“软分配”,即每个单独的高斯模型对数据聚类都有贡献,不过贡献值有大有小。 传送门:https://blog.csdn.net/tingyue_/article/details/70739671

9、使用高斯混合模型时,怎样判断它适用与否?(正态分布)

答:依然,请前往以下页面。 详情传送门:https://stats.stackexchange.com/questions/260116/when-to-use-gaussian-mixture-model

10、聚类时标签已知,怎样评估模型的表现?

答: CSDN博主howhigh说,如果有了类别标签,那么聚类结果也可以像分类那样计算准确率和召回率。但是不应该将分类标签作为聚类结果的评价指标,除非你有相关的先验知识或某种假设,知道这种分类类内差距更小—— 详情传送门:https://blog.csdn.net/howhigh/article/details/73928635

11、为什么不用逻辑回归,而要用GBM?

答:GB是Gradient Boosting。引用知乎答主Frankenstein的话,从决策边界上看,线性回归的决策边界是一条直线,逻辑回归的决策边界是一条曲线,GBM的决策边界可能是很多条线。 逻辑回归只能处理回归问题,而GBM还可以用于解决分类或排序问题。 参考答案传送门: https://www.zhihu.com/question/54626685/answer/140610056

12、每年应聘Google的人有多少?

答:两百万。大多数人可能都只是顺便投一下,看看会不会中奖。

当然,技术题是出不完的,也是答不完的——以下统一不给答案了,请进行自我测试,并注意考试时间。

13、你给一个Google APP做了些修改。怎样测试某项指标是否有增长

14、描述数据分析的流程。

15、高斯混合模型 (GMM) 中,推导方程。

16、怎样衡量用户对视频的喜爱程度?

17、模拟一个二元正态分布。

18、求一个分布的方差。

19、怎样建立中位数的Estimator?

20、如果回归模型中的两个系数估计,分别是统计显著的,把两个放在一起测试,会不会同样显著?

不只是技术

除了这些深刻的技术问题,Google历年的面试中,总有一些直击灵魂的神秘考题。BI也统计了一些,例如:

  • 一辆校车可以放进多少个高尔夫球?
  • 擦一遍西雅图所有的窗户需要多少钱?
  • 井盖为什么是圆的?

再来个长的:

你只有两个生鸡蛋,是可以无比坚固也可以无比脆弱的鸡蛋。在一百层的高楼里,在两个鸡蛋都阵亡之前,怎么才能知道它们最高能从几楼摔下来不碎?需要多少步?

鸡蛋表示:

很好奇,脑洞考题是怎样打分的。友情提示:上述几道题,有些是可以抖机灵的……

如果你想知道答案和更多类似题,可以在量子位公众号(ID:QbitAI)对话界面,回复:“神秘题”三个字。

史上最正统Google面试宝典

真题谈完了。虽然面试准备是个老生常谈的话题,但下面这份宝典无论如何你都要看看。

论“血统”,这份宝典最为正宗,因为它是Google招聘官网上专门为“Future Googler”准备的。一起看看招聘方亲自对面试者提出了哪些建议——

预测面试题:面试前,你基本可以预测出90%的问题了。“为什么想申请这份工作”“你曾经解决过什么问题”等问题基本在面试中必现,写20个出来先提前准备着有益无害。

计划:写出极可能出现的问题后,针对列出你的清单上的每一个问题,写下你的答案。这将帮助你加深对这些问题的印象,是面试时能对答如流的利器。

Plan B&C:针对上面这些问题,Google招聘人员建议你最好能准备3个答案。这些备用答案能在第一位面试官不喜欢你的故事时,帮你征服下一位面试官。

解释:面试官想要了解你的想法,所以在面试过程中需要展示你的思维过程和最后的解决方案。这个环节不仅是在评估你的技术能力,还在评估你解决问题的灵活性。

讲故事:Google面试官希望以会“讲故事”。有一个很有意思的面试小技巧,就是每个问题都应该用一个故事来回答。比如“你怎样领导……”的问题最好就举个例子讲个故事吧~

探讨:在面试过程中你可能会不自觉进入一些问题“圈套”,这是面试官想深入了解当你遇到技术难题中你看重哪些信息,希望看到你如何处理这个问题以及你解决问题的主要方法,这时一定要就你的思维过程进行讨论。

改进:思考如何改进你现在的解决方案,让面试官知道你在做什么,为什么要这样做。

练习:最后应聘者要时刻谨记熟能生巧。模拟面试环节,自信说出你的答案,直到你能清晰而简明地讲述每一个故事。

看来,准备Google的面试是个时间活~除了技术能力需要过硬以外,单单面试时这20×3个问题的准备也得准备不少时间呢。

对了,已经应聘成功的Google工程师们还给你提了一些技术类问题的“备考”建议,听听老人言,助你面试一臂之力。

视频内容

对,有隐藏关卡!

应聘Google的方法只有内推、校招和发简历社招这三种?Naive,小看Google工程师的脑洞了,据多位大神在博客上透露,Google的应聘来源还有秘密渠道

如果Google捕捉到你在搜索某个特定的编程术语,可能就会有人邀请你申请这个职位。就有人能解锁这种隐藏关卡~

小哥Max Rosett曾遇到过一个有趣的故事。在用Google搜索“Python lambda函数列表解析”时,搜索界面分裂并向后折叠,一个方框弹出来写着“你在使用我们的语音”,还邀请他去挑战一下。

点击“挑战”后,页面跳转到一个叫“foo.bar”的页面,还会出现一道限时挑战题。连续攻破六道题后,foo.bar邀请这位挑战者提交个人信息。后来,就有招聘人员来要简历了。

这个foo.bar的地址如下:

https://www.google.com/foobar/

不过莫激动,没有得到Google的邀请这个网页还是没有办法注册的~

故事的最后给我们的启示,可能是多用Google搜索……

Google式“高考”

关于Google面试这事,其热度和难度无异于产业内的“高考”,千军万马过独木桥的景象又出现了。

这其中有个想进Google工作“励志哥”John Washam火了,这位小哥大学时修经济学,韩国当兵退伍后去教授英语,但对于代码和Google的渴望没有磨灭,他励志专门腾出八个月的时间全职准备Google面试,实现自己的目标!

“励志哥”John Washam

这是一场“苦行僧”式的修行,小哥曾三周攻读1000页的C++书,也在GitHub上收获了21000多个star,还做了1792张电子卡片方便复习……读书、写代码和听讲座的时间总共1000多个小时了。

励志哥的夏季阅读书单,只是准备过程中很小一部分

八个月的刻苦准备后,小哥……还是落选了,甚至连电话面试都没有就被直接拒绝了。

但努力总会有回报,被拒后的小哥目前就职于亚马逊。

Google虽好,也不能贪杯哦。

本文分享自微信公众号 - 量子位(QbitAI),作者:关注前沿科技

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-04-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 人民日报发推欢迎Google重返大陆,FB上长文阐述详细立场

    最近各种猜测和报道不断涌出的背景下,人民日报昨日在社交平台Twitter上发出一个明确的信号:

    量子位
  • 一文看尽Google新品发布会:手机、音箱、笔记本,硬件全面AI化

    李根 若朴 发自 十一假期 量子位 报道 | 公众号 QbitAI AI+软件+硬件,让Google助手无处不在。 这是Google刚刚结束的产品发布会的核心...

    量子位
  • 3100名谷歌员工联名上书,抵制与五角大楼合作:不想做战争生意

    一封联名信在Google内部流传着,已经有3100多人在上面签了名,其中包括数十名高级工程师,抗议该公司为五角大楼提供人工智能力量。

    量子位
  • Google AI的焦虑:拆分搜索和人工智能部门,Jeff Dean任AI业务负责人

    作者 | 费棋 美国时间 4 月 2 日,据 The Information 报道,Google 证实将搜索和人工智能业务分拆为两个独立部门,该公司网络搜索业务...

    AI科技大本营
  • 【重磅揭秘】Google帝国原力觉醒:2016将征战哪些新疆域?

    又到了半年一度的时候了:我们对 Google 的发展轨迹进行了追踪。对于正在不断扩张疆域的Google帝国,我们概括了所有(我们知道的)处于进展中的项目,推出半...

    新智元
  • 从Pixel 3a到Android Q,一份谷歌AI能力的“成绩单” | Google I/O全程回顾

    当地时间 5 月 7 日上午(北京时间 5 月 8 日凌晨一点),一年一度的 Google I/O 开发者大会如期而至。今年也是 Google 旗帜鲜明推行 “...

    AI科技大本营
  • 在 Google 工作 10 年,到底能学到啥?

    我 2006 年 3 月加入 Google,2016 年 9 月离开。离开时的头衔/职位是 Staff Software Engineer / Manager。...

    疯狂的技术宅
  • Google勇敢新世界:两个天才的相遇

    谢尔盖·布林(Sergey Brin)也许永远不会忘记1979年,那一年他刚好5岁,由于前苏联对犹太人实行歧视政策,他们全家移民到美国,在这片大陆上开始了新的生...

    爱明依
  • 谷歌搜索重返中国按下暂停键,CEO皮查伊“对决”美国国会

    在经历了今年 “Project Maven”项目和“蜻蜓”计划的道德滑坡的声讨过后,Google 公司仍旧“流年不顺”。先是 Google Cloud 的三位女...

    AI科技大本营
  • 响铃:从文化驱动到利益驱动,Google的2018不太好过

    2018,对世界来说是不平凡的一年,对科技巨头Google来说,是不太好过的一年。

    曾响铃

扫码关注云+社区

领取腾讯云代金券