专栏首页奇点大数据业余时间学数据分析,如何快速上手

业余时间学数据分析,如何快速上手

数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹……,大到企业的销售、运营数据,产品的生产数据,交通网络数据……

数据分析人才热度也是高居不下,一方面企业的数据量在大规模的增长,对于数据分析的需求与日俱增;另一方面,相比起其他的技术职位,数据分析师的候选者要少得多。

数据分析师应该具备哪些技能

要明确学习的路径,最有效的方式就是看具体的职业、工作岗位对于技能的具体需求。

其次是数据分析的流程,一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:

高效的学习路径是什么?就是数据分析的这个流程。按这样的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。

接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。

- ❶ -

数据获取:公开数据、Python爬虫

外部数据的获取方式主要有以下两种。

第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。给大家推荐一些常用的可以获取数据集的网站:

UCI:加州大学欧文分校开放的经典数据集,被很多数据挖掘实验室采用。

http://archive.ics.uci.edu/ml/datasets.html

国家数据:数据来源于中国国家统计局,包含了我国经济民生等多个方面的数据。

http://data.stats.gov.cn/

CEIC:超过128个国家的经济数据,能精确查找GDP、进出口零售,销售等深度数据。

http://www.ceicdata.com/zh-hans

中国统计信息网:国家统计局官方网站,汇集了国民经济和社会发展统计信息。

http://www.tjcn.org/

另一种获取外部数据的方式就是爬虫。

比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。

常用的的电商网站、问答网站、二手交易网站、婚恋网站、招聘网站等,都可以爬到非常有价值的数据。

- ❷ -

数据存取:SQL语言

在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也至少要懂得SQL的操作,能够查询、提取公司的数据。你需要掌握以下技能:

  • 提取特定情况下的数据:企业数据库里的数据一定是大而繁复的,你需要提取你需要的那一部分。比如你可以根据你的需要提取2017年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。
  • 数据库的增、删、查、改:这些是数据库最基本的操作,但只要用简单的命令就能够实现,所以你只需要记住命令就好。
  • 数据的分组聚合、如何建立多个表之间的联系:这个部分是SQL的进阶操作,多个表之间的关联,在你处理多维度、多个数据集的时候非常有用,这也让你可以去处理更复杂的数据。

SQL这部分比较简单,主要是掌握一些基本的语句。当然,还是建议你找几个数据集来实际操作一下,哪怕是最基础的查询、提取等。

- ❸ -

数据预处理:Python(pandas)

很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。

比如缺失值,我们是直接去掉这条数据,还是用临近的值去补全,比如异常的值,如何设置合理数据区间进行取舍……

对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:

  • 选择:数据访问(标签、特定值、布尔索引等)
  • 缺失值处理:对缺失数据行进行删除或填充
  • 重复值处理:重复值的判断与删除
  • 异常值处理:清除不必要的空格和极端、异常数据
  • 相关操作:描述性统计、Apply、直方图等
  • 合并:符合各种逻辑关系的合并操作
  • 分组:数据划分、分别执行函数、数据重组
  • Reshaping:快速生成数据透视表

- ❹ -

概率论及统计学知识

数据整体分布是怎样的?什么是总体和样本?中位数、众数、均值、方差等基本的统计量如何应用?如何在不同的场景中做假设检验?数据分析方法大多源于统计学的概念,所以统计学的知识也是必不可少的。需要掌握的知识点如下:

  • 基本统计量:均值、中位数、众数、百分位数、极值等
  • 其他描述性统计量:偏度、方差、标准差、显著性等
  • 其他统计知识:总体和样本、参数和统计量、ErrorBar
  • 概率分布与假设检验:各种分布、假设检验流程
  • 其他概率论知识:条件概率、贝叶斯等

有了统计学的基本知识,你就可以用这些统计量做基本的分析了。通过可视化的方式来描述数据的指标,其实可以得出很多结论了:比如排名前100的是哪些,平均水平是怎样的,近几年的变化趋势如何……

你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。

- ❺ -

Python 数据分析

如果你有一些了解的话,就知道目前市面上其实有很多 Python 数据分析的书籍,但每一本都很厚,学习阻力非常大。但其实真正最有用的那部分信息,只是这些书里很少的一部分。

比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:

  • 回归分析:线性回归、逻辑回归
  • 基本的分类算法:决策树、随机森林、朴素贝叶斯……
  • 基本的聚类算法:k-means……
  • 特征工程基础:如何用特征选择优化模型
  • Python 数据分析包:scipy、numpy、scikit-learn等

在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。

然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去学习如何通过特征提取、参数调节来提升预测的精度。这就有点数据挖掘和机器学习的味道了,其实一个好的数据分析师,应该算是一个初级的数据挖掘工程师了。

- ❻ -

系统实战与数据思维

到这个时候,你就已经具备了数据分析的基本能力了。但是还要根据不同的案例、不同的业务场景进行实战,练习解决实际问题的能力。

上面提到的公开数据集,可以找一些自己感兴趣的方向的数据,尝试从不同的角度来分析,看看能够得到哪些有价值的结论。

你也可以从生活、工作中去发现一些可用于分析的问题,比如上面说到的电商、招聘、社交等平台等数据中都有着很多可以挖掘的问题。

开始的时候,你可能考虑的问题不是很周全,但随着你经验的积累,慢慢就会找到分析的方向,有哪些一般分析的维度,比如Top榜单、平均水平、区域分布、同比环比、相关性分析、未来趋势预测等等。随着经验的增加,你会有一些自己对于数据的感觉,这就是我们通常说的数据思维了。

本文分享自微信公众号 - 奇点(qddata)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-06-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 大数据、人工智能与云计算的融合与应用

    摘 要:通过对数据处理阶段性发展的解析,分析大数据、人工智能技术的发展趋势。结合实际生产需求,验证了基于容器云架构的新一代大数据与人工智能平台在数据分析、处理、...

    刀刀老高
  • 大数据时代下的十大变革你知道吗?

    传统科学思维中,决策制定往往是“目标”或“模型”驱动的——根据目标(或模型)进行决策。大数据时代下,数据成为决策制定的主要“触发条件”和“重要依据”。

    刀刀老高
  • 大数据工程师职业前景到底有多好?听BAT怎么说!

    大数据是眼下非常时髦的技术名词,与此同时自然也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。

    刀刀老高
  • 业余时间学数据分析,如何快速上手

    谷歌的数据分析可以预测一个地区即将爆发的流感,从而进行针对性的预防;淘宝可以根据你浏览和消费的数据进行分析,为你精准推荐商品;口碑极好的网易云音乐,通过其相似性...

    Crossin先生
  • 【陆勤阅读】从经典数据案例看面对大数据我们如何去驾驭?

    大数据掀起的革命,正在全面影响你我的生活。面对如此大量数据,该怎麽用?如何正确解读?国外企业成功经验,可以做为借鉴。   一场大数据分析的「数据革命」登场,正掀...

    陆勤_数据人网
  • 大数据周周看 | 行业大牛不甘平淡忙创业,戴尔天价收购背后竟是数千人的失业判决书

    <数据猿导读> Dell公司宣布裁员至少两千人;紫光股份与西部数据拟出资10亿元建立大数据公司;原中国移动研究院专家王帅宇加盟北京供销大数据集团,出任CTO一职...

    数据猿
  • 大数据(生于2006,卒于2019)已死!

    由于关注的重心从我们收集数据的方式转向实时处理数据,大数据时代即将终结。大数据现在是支持多云、机器学习和实时分析这几个新时代的业务资产。

    Spark学习技巧
  • “数据治理那点事”系列之一:那些年我们一起踩过的坑

    大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大打折扣,甚至根本不可用不...

    数澜科技
  • 大数据周周看 | 大数据“黑科技”入驻里约奥运,昔日出行冤家喜结连理

    <数据猿导读> 上周,最让人为之称道的便是出行行业两巨头宣布合并的消息,公告一出,一时激起一片哗然,随后反垄断的声音此起彼伏,总之滴滴每次一出手,总能如此兴师动...

    数据猿
  • 做数据挖掘工作需要具备哪些思维原理?

    大数据思维原理是什么?笔者概括为10项原理。 一、数据核心原理 从“流程”核心转变为“数据”核心 大数据时代,计算模式也发生了转变,从“流程”核心转变为“数据...

    机器学习AI算法工程

扫码关注云+社区

领取腾讯云代金券