“快到没朋友”的目标检测模型YOLO v3问世,之后arXiv垮掉了…

安妮 编译整理 量子位 出品 | 公众号 QbitAI

今天有三件事挺有意思。

一是以“快到没朋友”著称的流行目标检测模型YOLO推出全新v3版,新版本又双叒叕提升了精度和速度。在实现相近性能时,YOLOv3比SSD速度提高3倍,比RetinaNet速度提高近4倍。

二是有细心网友发现,模型一作在arXiv上发布研究论文时,脑回路清奇地将自己这篇论文自引自用了一下。

三是……在小哥自引自用后没多久,arXiv官方账号宣布服务器由于不明原因挂掉了……

更快更强

先说更新这件正经事~

通过调整YOLO模型中的一些细节,v3模型增大了一些准确率也有所提升,速度依旧非常快。客官不妨先看一下介绍视频——

视频内容

对于320x320的图像,YOLOv3的检测速度可达22ms,mAP值可达28.2,与SSD的准确率相当但速度快3倍。

当用旧版.5 IOU mAP检测指标时,YOLOv3在英伟达TitanX显卡上51ms达到57.9AP50的性能。相比之下,RetinaNet则用198ms达到57.5AP50的性能,两者性能相近但速度相差近4倍。

在实现相同准确度情况下,YOLOv3速度明显优于其他检测方法(单一变量实验)

在COCO数据集上不同模型的运行情况对比

作者,和他的少女心

YOLOv3出自华盛顿大学的Joseph Redmon和Ali Farhadi之手。

Ali Farhadi是华盛顿大学的副教授,一作Joseph Redmon是他的博士生,曾在IBM实习,其实还当过电台DJ。Redmon是一个少女心有点爆棚的程序员,这里有一份他的简历,可以自行感受下。

处于不知名的原因,小哥有一些“小马情结”,可以再次感受下个人网站的画风——

“论文就该实在点”

如果单单是YOLOv3发布新版本,可能在Reddit上还达不到热度200的水平。有意思在,论文从头到尾都透露着“不太正经”的气息,比如作者自引自用论文,比如这个Introduction的开头——

自己今年没怎么做研究,花了很多时间在Twitter上,捣鼓了一下GAN。

没错,这真的是一篇arXiv上的论文。Redmon还在论文中写了写自己尝试但失败了的方法。结尾,也不忘调侃一下热点。

“还有一个更好地问题:‘我们如何使用检测器?’Facebook和Google的很多研究员也在做相关研究啊。我认为,我们至少能知道技术被应用在了有利的方面,并且不会被恶意利用并将它们卖给…等一下,你说这就是它的用途??Oh!”

Reddit上网友的称赞每篇论文都应该这样实在,小哥在Reddit已收获大批粉丝……

相关资料

对了,对论文有疑问还是不要去@作者了,反正对方也不会回,论文中都说了~

你可以选择冒险再回看研读一下论文和代码。

论文下载地址:

https://pjreddie.com/media/files/papers/YOLOv3.pdf

项目地址:

https://pjreddie.com/darknet/yolo/

相关代码:

https://github.com/pjreddie/darknet

不过你得小心

毕竟……YOLO模型的全称可是You Only Look Once(只能看一眼),再看可能会被吃掉!

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2018-03-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏一名叫大蕉的程序员

机器学习虾扯淡之特征工程(一)No.38

0x00瞎扯淡 当当当,我又来啦。 哇咔咔,很多人都说我好久好久没写机器学习的东西啦。是不是忘啦? 没有没有,记着呢。 只是最近在看很多其他的东西,比如敲敲sc...

24580
来自专栏腾讯云数据处理团队的专栏

万象优图:图片成本优化的瑞士军刀

引言不知道每天上下班的你坐在地铁公交上会刷哪些app呢?也许正为周末和朋友去哪里聚会而挑选餐厅;也许刷着朋友圈看看朋友们有哪些新动态;也许在Ins上浏览着大V博...

45310
来自专栏数说工作室

训练集是题库,测试集就是高考!| 不能更简单通俗的机器学习名词解释

1. train? valid? or test? 机器学习最明显的一个特点是需要大量的数据。特别对监督学习来说,就是需要大量的带标签数据(labeled da...

48080
来自专栏思影科技

EEG和fNIRS同步研究揭示年龄和神经反馈对运动想象信号的影响

注释:这篇文章相当长,请耐心看完。 来自德国奥尔登堡大学心理学部的Catharina Zich等人在Neurobiology of Aging杂志上发表了一项基...

40860
来自专栏AI科技评论

干货 | 不能更通俗易懂的机器学习名词解释

train? valid? or test? 机器学习最明显的一个特点是需要大量的数据。特别对监督学习来说,就是需要大量的带标签数据(labeled dat...

40070
来自专栏CreateAMind

中科院说的深度学习指令集diannaoyu到底是什么?寒武纪4篇论文的解读--下

2016年3月,中国科学院计算技术研究所陈云霁、陈天石课题组提出的深度学习处理器指令集DianNaoYu被计算机体系结构领域顶级国际会议ISCA2016(Int...

29040
来自专栏思影科技

基于局部脑血流量和工作记忆表现预测2年内血压变化

贝叶斯推荐你关注思影科技 来自美国匹兹堡大学精神病与心理学部的J.Richard Jennings等人在Hypertension杂志上发文指出,基于ASL成像的...

33960
来自专栏AI研习社

Kaggle 图像识别新赛来袭,还有一家中国企业提供赞助

AI 研习社此前介绍过 CVPR 2018 workshop 上的多个比赛,详情参见看过 CVPR 2018 workshop 后,发现有一个我不认识的 Lad...

38160
来自专栏机器学习人工学weekly

机器学习人工学weekly-2018/2/25

注意下面很多链接都需要翻墙,无奈国情如此。 1. 学习MXNet的资源 1.1 用MXNet根据logo图片预测公司名称 Logo detection usin...

370100
来自专栏AI研习社

入门必读的机器学习名词解释,你都懂了吗?

train? valid? or test? 机器学习最明显的一个特点是需要大量的数据。特别对监督学习来说,就是需要大量的带标签数据(labeled dat...

36040

扫码关注云+社区

领取腾讯云代金券