deepmind 做通用人工智能的思路

Early Visual Concept Learning with Unsupervised Deep Learning

Abstract

Automated discovery of early visual concepts from raw image data is a major open challenge in AI research.

自动学习基础物体概念

Addressing this problem, we propose an unsupervised approach for learning disentangled representations of the underlying factors of variation. 属性分解

We draw inspiration from neuroscience, and show how this can be achieved in an unsupervised generative model by applying the same learning pressures as have been suggested to act in the ventral visual stream in the brain. 视觉脑神经启发

By enforcing redundancy reduction, encouraging statistical independence, and exposure to data with transform continuities analogous to those to which human infants are exposed, we obtain a variational autoencoder (VAE) framework capable of learning disentan gled factors. 婴儿类似的视觉环境

Our approach makes few assumptions and works well across a wide variety of datasets. Furthermore, our solution has useful emergent properties, such as zero-shot inference and an intuitive understanding of “objectness"。高级功能

1 Introduction 简介对实现类人智能的论述非常精彩

State-of-the-art AI approaches still struggle with some scenarios where humans excel [21],

such as knowledge transfer, where faster learning is achieved by reusing learnt representations for numerous tasks (Fig. 1A); or zero-shot inference, where reasoning about new data is enabled by recombining previously learnt factors (Fig. 1B).

属性组合推理快速学习判断

[21] suggest incorporating certain “start-up” abilities into deep models, such as intuitive understanding of physics, to help bootstrap learning in these scenarios.

Elaborating on this idea, we believe that learning basic visual concepts, such as the “objectness” of things in the world, and the ability to reason about objects in terms of the generative factors that specify their properties, is an important step towards building machines that learn and think like people.

物体概念及概念的相关属性。

We believe that this can be achieved by learning a disentangled posterior distribution of the generative factors of the observed sensory input by leveraging the wealth of unsupervised data [4, 21]. 属性分解

We wish to learn a representation where single latent units are sensitive to changes in single generative factors, while being relatively invariant to changes in other factors [4]. 单一变量属性

With a disentangled representation, knowledge about one factor could generalise to many configurations of other factors, thus capturing the “multiple explanatory factors” and “shared factors across tasks” priors suggested by [4].

Unsupervised disentangled factor learning from raw image data is a major open challenge in AI. Most previous attempts require a priori knowledge of the number and/or nature of the data generative factors [16, 25, 35, 34, 13, 20, 8, 33, 17]. This is infeasible in the real world, where the newborn learner may have no a priori knowledge and little to no supervision for discovering the generative factors. So far any purely unsupervised approaches to disentangled factor learning have not scaled well [11, 30, 9, 10].

婴儿最初视觉学习是完全无监督的。

We propose a deep unsupervised generative approach for disentangled factor learning inspired by neuroscience [2, 3, 24, 15]. We apply similar learning constraints to the model as have been suggested to act in the ventral visual stream in the brain [28]: redundancy reduction, an emphasis on learning statistically independent factors, and exposure to data with transform continuities analogous to those human infants are exposed to [2, 3]. We show that the application of such pressures to a deep unsupervised generative model can be realised in the variational autoencoder (VAE)framework [19, 26].

跟婴儿相似的视觉学习环境

Our main contributions are the following: 1) we show the importance of neuroscience inspired constraints (data continuity, redundancy reduction and statistical independence) for learning disentangled representations of continuous visual generative factors; 2) we devise a protocol to quantitatively compare the degree of disentanglement learnt by different models; and 3) we demonstrate how learning disentangled representations enables zero-shot inference and the emergence of basic visual concepts, such as “objectness”.

本文由zdx3578推荐。

原文发布于微信公众号 - CreateAMind(createamind)

原文发表时间:2016-11-13

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

学界 | 斯坦福提出神经任务编程NTP:让机器人从层级任务中学习

选自arXiv 机器之心编译 参与:朱乾树、蒋思源 斯坦福视觉与学习实验室与加州大学提出神经任务编程(NTP),它可以将指定任务作为输入,并递归地将该任务分解成...

3639
来自专栏大数据挖掘DT机器学习

车辆目标检测

7634
来自专栏机器之心

资源 | Feature Tools:可自动构造机器学习特征的Python库

机器学习越来越多地从人工设计模型转向使用 H20、TPOT 和 auto-sklearn 等工具自动优化的工具。这些库以及随机搜索(参见《Random Sear...

1852
来自专栏AI研习社

从原理到实战 英伟达教你用PyTorch搭建RNN(下)

编者按:本文为《从原理到实战 英伟达教你用PyTorch搭建RNN》的下篇,阅读上篇请点击这里。文章原载于英伟达博客,AI 研习社编译。 ? 代码实操 在开...

4264
来自专栏机器之心

业界 | OpenAI提出新型神经网络:自动计算词对象,实现实体消岐

2997
来自专栏新智元

Facebook开源PyTorch版本fairseq翻译模型,训练速度提高50%

【新智元导读】FAIR的开源序列到序列(sequence-to-sequence)引擎现在可以在PyTorch使用了。FAIR今天发布了fairseq-py,这...

49511
来自专栏数据科学学习手札

(数据科学学习手札08)系统聚类法的Python源码实现(与Python,R自带方法进行比较)

聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括...

2785
来自专栏人工智能

通过JS库Encog实现JavaScript机器学习和神经学网络

在本文中,你会对如何使用 JavaScript 实现机器学习这个话题有一些基本的了解。

1.6K10
来自专栏大数据挖掘DT机器学习

R语言中的情感分析与机器学习

利用机器学习可以很方便的做情感分析。本篇文章将介绍在R语言中如何利用机器学习方法来做情感分析。在R语言中,由Timothy P.Jurka开发的情感分析以及更...

4403
来自专栏程序员宝库

使用 JavaScript 实现机器学习和神经学网络

英文:JeffHeaton 译文: 云+社区/白加黑大人 https://cloud.tencent.com/developer/article/103589...

39010

扫码关注云+社区

领取腾讯云代金券