机器学习算法可有效发现艰难梭菌感染

美国麻省理工学院、哈佛大学医学院附属麻省总医院和密歇根大学的科研人员开发出了一种机器学习算法可有效发现艰难梭菌感染,相比传统方法可较早实现诊断。

每年都有近3万美国人死于一种名为艰难梭菌(Clostridium difficile)的侵袭性肠道感染细菌。这种细菌对许多常用抗生素具有抗药性,即使在能够杀死通常可控制住这种细菌的有益细菌的抗生素治疗中,这种细菌仍然能够繁殖。麻省理工学院(MIT)计算机科学与人工智能实验室(Computer Science and Artificial IntelligenceLaboratory,CSAIL)、麻省总医院(Massachusetts GeneralHospital,MGH)和密歇根大学(University of Michigan,U-M)的科研人员现在已开发出研究型“机器学习”模型。这些模型专为各大机构量身定制,可比使用当前诊断方法更早地预测出患者感染艰难梭菌的可能性。

“尽管在预防艰难梭菌感染和确诊后及早开始治疗方面投入了大量精力,感染率仍在继续上升,”麻省总医院感染内科医学博士、研究共同第一作者兼哈佛医学院(Harvard Medical School)医学助理教授埃丽卡·谢诺伊(EricaShenoy)说道。“我们需要更好的工具来帮助识别具有最高风险的患者,以便有针对性地进行预防和治疗干预,从而减少进一步传播并改善患者治疗效果。”

作者们指出,之前的大部分艰难梭菌感染风险模型都设计为“一刀切”方法,并且仅包含几个风险因素,因而用处有限。共同第一作者兼麻省理工学院计算机科学与人工智能实验室外科学硕士玛吉·马卡尔(Maggie Makar)和密歇根大学计算机科学与工程专业研究生杰雷尔·欧(Jeeheh Oh)及其同事采用“大数据”方法分析了完整的电子健康档案(Electronic Health Record,HER),以此预测患者在住院期间感染艰难梭菌的风险。他们的方法允许开发机构特定模型,可适应不同的患者人群、不同的电子健康档案系统和特定于各家机构的因素。

“如果仅将数据注入一刀切模型中,患者人群、医院布局、检验和治疗方案,甚或医务人员与电子健康档案之间交互方式的机构差异都可能会导致基础数据分布出现不同,并可能最终导致此类模型的表现差强人意,”密歇根大学计算机科学与工程助理教授兼研究共同第一作者詹娜·威恩斯(Jenna Wiens)博士说道。“为了缓和这些问题,我们采用医院特定方法,训练为每家机构量身定制的模型。”

科研人员借助其基于机器学习技术的模型,分别以两年和六年为期限,对在麻省总医院或密歇根大学医院(Michigan Medicine,密歇根大学学术医学中心)入院的257,000名患者的电子健康档案中去除了身份识别信息的数据进行分析。这些数据包括每名患者的人口统计数据和病史、其入院细节和每日住院情况,以及患者被艰难梭菌感染的可能性。该模型针对每名患者生成每日风险评分,当超过设定阈值时,患者会被归类为高风险患者。

整体而言,这些模型在预测最终会被诊断为感染了艰难梭菌的患者方面非常成功。在采集诊断样本前至少五天,这些模型就已经对其中半数感染患者进行了准确预测,这样一来,可集中对具有较高风险的患者进行靶向抗菌干预。如果在前瞻性研究中得到证实,风险预测评分可为艰难梭菌的早期筛查提供指导。对于在病程早期确诊的患者,启动治疗可抑制疾病严重程度加深,且确诊的艰难梭菌感染患者可得到隔离并能启动接触预防措施来防止感染向其他患者传播。

研究团队已在网上免费提供算法代码(https://gitlab.eecs.umich.edu/jeeheh/ICHE2018_CDIRiskPrediction),以供其他人查看及针对各自所在机构修改。谢诺伊指出,探索将类似算法应用于所在机构的医疗设施需要召集合适的本地主题专家并验证相关模型在其机构中的表现。

原文发布于微信公众号 - 人工智能快报(AI_News)

原文发表时间:2018-04-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

跨越时空的度量:社会发展指数

1999
来自专栏大数据文摘

业界 | 福布斯:2018年机器学习试点及实施数量将翻倍

1713
来自专栏CSDN技术头条

数据的艺术 Teradata数据科学家数据可视化作品集

近日,在Teradata大数据峰会上展出了由Teradata数据科学家及数据顾问提供的一系列的”数据分析艺术”数据分析视觉化展,继阿姆斯特丹Teradata U...

2597
来自专栏华章科技

在职场中,长得漂亮真的有用吗?

这张图来自两位学者对国内某网站超过100万份招聘广告的分析结果。总的来看,有7.7%的企业会对应聘者的外貌提出要求(形象xx,等等)。

784
来自专栏DT数据侠

560万Facebook人际关系数据,揭秘家庭职业传承“真相”

当你走出校门迈向职场,择业时也许很难完全避免来自父母的影响。而这种影响甚至还不是一时,而是打你一出生就已经开始了。“龙生龙凤生凤”,父母的职业在多大程度上会影响...

1100
来自专栏AI科技评论

AI 影响因子 10 月大盘点,腾讯 AI Lab 又夺第一

「AI 影响因子」是雷锋网学术频道 AI 科技评论旗下数据库项目,旨在呈现国内企业研究院学术&开发实力,为高校学生及从业者提供在会议/期刊论文、数据集比赛及开发...

561
来自专栏AI研习社

教你如何利用算法原理,让TA对你一见钟情

本文作者Mackenzie Cozart,原文刊载于www.women.com。 选题 翻译 / 王奇文 校对 / 张丹婷 整理 / 雷锋字幕组 本文介绍美国社...

3086
来自专栏大数据文摘

刚刚,英伟达发布全球最强AI训练器HGX-2,可替换300个CPU服务器

1202
来自专栏DT数据侠

论IT业,深圳可能要比上海领先不止两年呢

作为“一夜崛起之城”,深圳城市的发展速度众所周知。其实,“深圳速度”不仅体现在盖高楼,更体现在工作岗位的升级变迁上。在7月27日的深圳城市大数据活跃报告发布会现...

620
来自专栏公众号文章

熊彼特的创新理论:非连续性模型

主流的经济理论讲供给平衡,经济在不受外力干扰的情况下,最终会趋于并保持在均衡状态。而熊彼特却认为经济很少处于均衡状态,它总是从一个均衡走向另一个均衡。在这个过程...

3012

扫码关注云+社区