ACL2018 明日墨尔本召开:总体论文接收率 24.7%,两大特邀讲者名单公布

雷锋网 AI 科技评论按:ACL2018 将于 7 月 15 日-7 月 20 日在墨尔本召开,这也是 ACL 第二次登陆澳洲。从 2006 年 ACL 首次在悉尼召开,距今已 12 年之久。

据组委会介绍,ACL 社群正在持续增长中,截止到投稿日期前,共收到 1621 篇论文,其中长论文 1045 篇,短论文 576 篇。除去不合格和被驳回的论文,共计有 1551 篇论文进入最终审查(1021 篇长论文,530 篇短论文)名单。

随着社群的增长,竞争也越来越激烈,最终,组委会在 1018 篇提交的长论文中接收 256 篇,在 526 篇提交的短论文中接收 125 篇,总体录取率为 24.7%。

组委会同时透露接收论文的四大标准:

  • 审稿人提出的论文优/缺点及这些意见的重要程度
  • 讨论的结果和作者的回复
  • 对计算机语言的贡献:无论论文是否推进(或有助于)我们对语言的理解
  • 多样性:不希望 ACL 上充斥着各种相似的论文,比如在一个众所周知的任务上实现 1% 的进步

除了以上四点标准,组委会还考虑到在论文类型、主题和所作贡献之间做出平衡,并重新考虑了审稿人在初步审查中对论文所提出的问题。

除了论文,讲者的竞争也异常激烈,组委会共收到 138 位特邀讲者提名,最终选出两位讲者在主会上带来特邀报告。

特邀报告

7 月 17 日上午,Carolyn Penstein Rosé 将带来题为《Who is the Bridge Between the What and the How》的特邀报告,她是卡耐基梅隆大学计算机科学学院语言技术和人机交互系教授。她的研究项目专注于更好地理解对话的社交和实际属性,并利用这种理解建立计算系统,以期提高人与人、人与计算机之间的对话效率。为了实现这些目标,她的研究涉足计算语篇分析和文本挖掘、对话智能体以及支持协同学习的计算机。

报告摘要

这篇报告会谈到十多年来的研究,涉及到理论基础激发了在网络上对真实世界产生影响的计算模型。最早的语言哲学家和近期的社会媒体分析计算方法研究人员都承认语言间 what 和 how 的区别,what 指语言的命题内容,how 指语言的形式、风格或者框架。而这些领域之间的桥梁是社会过程,它激发了在社会互动中产生特定命题内容的语言选择,旨在实现社会目标。

这些洞见使研究人员能够理解讨论过程和讨论结果之间的联系。这些发现一方面激励了实时监控讨论过程的计算方法的设计,另一方面,激励了支持网络中交互的干预措施的设计,目的是让学习、健康和福祉等各方面好于期望。

作为例子,在这次演讲中,我们将探讨被称为 Transactivity 的特殊讨论质量。Transactivity 指对说话者的推理、对话者的推理以及他们之间关系的表示程度。

在不同的背景下,在非常明确的理论框架下,这种结构与团结、影响、专业知识迁移和学习有关。在 Transactivity 架构下,认知和社会根基是紧密联系在一起的,对 who 建模就可以预测出 what 与 how 之间的联系。

7 月 18 日上午,Anton van den Hengel 将带来题为《Deep Neural Networks, and what they』re not very good at》的特邀报告,他是阿德莱德大学计算机科学学院教授,澳大利亚机器学习研究所所长,同时也是澳大利亚机器人视觉研究中心首席研究员。目前的研究兴趣包括深度学习、视觉和语言问题、基于图像的交互式建模、大规模视频监控、大型图像数据库学习。

报告摘要

深度神经网络在机器学习的多个领域,包括计算机视觉和自然语言处理上都产生了不可思议的影响。然而,深度神经网络使用的是非常高维的隐式表示,因此特别适合于能通过之前方案的联想回忆(associative recall)来解决的问题。机器学习不适合需要人工解释的表示、显式的符号操作或推理问题。深度神经网络对大量训练数据的依赖也意味着它们通常只适用于问题以及测试数据可以提前预测的情况下。

将深度神经网络应用于视觉问题所取得的一些成果仅仅在几年前都被认为是不可能实现的,同时,它还让人们注意到当前的深度网络在解决显式推理( explicit reasoning)的问题、知识库应用或持续学习方面存在的缺陷。

在这次演讲中,我将阐述一些为解决上述问题所采取的手段,以及一种新的学会学习的方法,我们希望这种方法能将深度学习的能力与基于显式推理方法的显著优势结合起来。

会议官网:https://acl2018.org

更多精彩内容,敬请期待雷锋网 AI 科技评论的专题报道。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2018-07-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器人网

五本必读的深度学习圣经书籍,入门 AI 从「深度学习」开始

(以下以 Daniel Jeffries 第一人称撰写) 多年来,由于实验室研究和现实应用效果之间的鸿沟,少有人持续研究人工智能,AI 在很多领域停滞不前。...

3926
来自专栏达观数据

干货分享 | 人工智能如何驱动未来教育发展?

ABOUT 1月13日下午,在沪江北京研发中心、沪江智能学习实验室和CCtalk在京举办的“智能引擎,驱动教育”技术沙龙中,达观数据创始人&CEO陈运文作为受邀...

3699
来自专栏机器之心

深度 | OpenAI提出强化学习新方法:让智能体学习合作、竞争与交流

选自OpenAI 机器之心编译 作者: Ryan Lowe等 参与:吴攀、Smith 让智能体(agent)学会合作一直以来都是人工智能领域内的一项重要研究课...

3596
来自专栏人工智能快报

根据达尔文进化论,只有最强人工智能算法才能生存

国际财经媒体Quartz报道,据谷歌和美国“开放人工智能实验室”(OpenAI)的一项研究,类达尔文进化论的神经进化理论可以帮助人工智能算法进化优化。 现代人工...

3699
来自专栏PPV课数据科学社区

2 个月如何从小白到 Python 高手,牛津大学博士带你飞!

Python 可以做任何事情。无论是从入门级选手到专业级数据挖掘、科学计算、图像处理、人工智能,Python 都可以胜任。或许是因为这种万能属性,周围好更多的小...

4076
来自专栏AI科技大本营的专栏

人工智能是不可怕,但你也得会用啊!

随着人工智能与机器人技术的发展,几乎所有的行业都开始采用人工智能来取代人类劳动力。 如同圈地运动和农业机械化把劳动力赶出土地的过程一样,眼下这场人工智能革命也正...

3305
来自专栏机器之心

讨论 | Reddit热门话题:你是否也对NLP的现状感到失望?

3586
来自专栏新智元

深度学习教父Hinton专访,AI已跨越重要分水岭

【新智元导读】《福布斯》昨日刊登Geoff Hinton专访。游走在学术和产业的AI大神Hinton谈到了自己研究兴趣的起源、在多伦多大学和谷歌所做的研究工作以...

3306
来自专栏AI科技评论

机器翻译新突破,微软中英新闻翻译达人类水平

翻译没有唯一标准答案,它更像是一种艺术。 AI科技评论消息:14 日晚,微软亚洲研究院与雷德蒙研究院的研究人员宣布,其研发的机器翻译系统在通用新闻报道测试集 n...

3716
来自专栏腾讯大数据的专栏

浅谈大数据应用研究的3个V

To knowledge是目标,手段还是mining,俗称数据民工。每当大家讲到大数据,都会不约而同的提到大数据几个V的定义:Volume,Variety,Ve...

2098

扫码关注云+社区