我猜,每个程序员对着电梯都想过调度算法吧!

作为程序员,今天你决定翘掉晚上的加班,约女朋友看电影。 电影是 20:00 开始。 虽然翘掉了加班,但你从公司出来,就已经 19:00 了。 公司在望京 SOHO,约会地点在朝阳大悦城。 (这点时间,祝你好运吧) 也许你运气真的很好,19:50 就赶到商场了。 心里想:“还有10分钟才开始,电影院在 F8,乘个直梯,两分钟就到,今天真美好。” 你按了上行按钮,并行的 3 部电梯,一部正从 F2 升 F3,一部刚刚打算从 F8 降下来,另一部刚降到 F3 竟然又升上去了! (理论上讲,一部电梯,如果从 F8 以自由落体的方式下来,不超过 3s;如果正常运行下来,大概 105s;) 可是...... 你到达电影院时,已经 20:10 了 你的女朋友也等得不耐烦了......

不管你是在北上广还是在港澳台,甚至三四线城市,凡是有规模的地区,高楼比比皆是。

不管是写字楼,还是大型商城,让你最头痛的就是乘电梯,尤其是在赶时间的时候。

每天早上,那些差5分钟就迟到的程序员,在等电梯时,一般会做两件事:

第一,在心里骂电梯慢;

第二,在心里暗算着电梯调度如何优化;

前者可能是写字楼里上班族惯有的精神类疾病,但后者肯定是程序员的职业病。

本文对“骂电梯”不给予任何指导性建议。

但说起电梯调度算法,我觉得还是可以给大家科普一下,好为大家在等电梯之余,打发时间而做出一点贡献。(电梯调度算法可以参考各种硬盘换道算法,下面内容整理自网络)

传统电梯调度算法

1.1 先来先服务算法(FCFS)

先来先服务(FCFS-First Come First Serve)算法,是一种随即服务算法,它不仅仅没有对寻找楼层进行优化,也没有实时性的特征,它是一种最简单的电梯调度算法。

它根据乘客请求乘坐电梯的先后次序进行调度。此算法的优点是公平、简单,且每个乘客的请求都能依次地得到处理,不会出现某一乘客的请求长期得不到满足的情况。

这种方法在载荷较轻松的环境下,性能尚可接受,但是在载荷较大的情况下,这种算法的性能就会严重下降,甚至恶化。

人们之所以研究这种在载荷较大的情况下几乎不可用的算法,有两个原因:

  • 任何调度算法在请求队列长度为1时,请求速率极低或相邻请求的间隔为无穷大时使用先来先服务算法既对调度效率不会产生影响,而且实现这种算法极其简单。
  • 先来先服务算法可以作为衡量其他算法的标准。

1.2 最短寻找楼层时间优先算法(SSTF)

最短寻找楼层时间优先(SSTF-Shortest Seek Time First)算法,它注重电梯寻找楼层的优化。

最短寻找楼层时间优先算法选择下一个服务对象的原则是最短寻找楼层的时间。

这样请求队列中距当前能够最先到达的楼层的请求信号就是下一个服务对象。

在重载荷的情况下,最短寻找楼层时间优先算法的平均响应时间较短,但响应时间的方差较大,原因是队列中的某些请求可能长时间得不到响应,出现所谓的“饿死”现象。

1.3 扫描算法(SCAN)

扫描算法(SCAN) 是一种按照楼层顺序依次服务请求,它让电梯在最底层和最顶层之间连续往返运行,在运行过程中响应处在于电梯运行方向相同的各楼层上的请求。

它进行寻找楼层的优化,效率比较高,但它是一个非实时算法。扫描算法较好地解决了电梯移动的问题,在这个算法中,每个电梯响应乘客请求使乘客获得服务的次序是由其发出请求的乘客的位置与当前电梯位置之间的距离来决定的。

所有的与电梯运行方向相同的乘客的请求在一次电向上运行或向下运行的过程中完成,免去了电梯频繁的来回移动。

扫描算法的平均响应时间比最短寻找楼层时间优先算法长,但是响应时间方差比最短寻找楼层时间优先算法小,从统计学角度来讲,扫描算法要比最短寻找楼层时间优先算法稳定。

1.4 LOOK 算法

LOOK 算法是扫描算法(SCAN)的一种改进。对LOOK算法而言,电梯同样在最底层和最顶层之间运行。

但当 LOOK 算法发现电梯所移动的方向上不再有请求时立即改变运行方向,而扫描算法则需要移动到最底层或者最顶层时才改变运行方向。

1.5 SATF 算法

SATF(Shortest Access Time First)算法与 SSTF 算法的思想类似,唯一的区别就是 SATF 算法将 SSTF 算法中的寻找楼层时间改成了访问时间。

这是因为电梯技术发展到今天,寻找楼层的时间已经有了很大地改进,但是电梯的运行当中等待乘客上梯时间却不是人为可以控制。

SATF 算法考虑到了电梯运行过程中乘客上梯时间的影响。

实时电梯调度算法

2.1 最早截止期优先调度算法

最早截止期优先(EDF-Earliest Deadline First)调度算法是最简单的实时电梯调度算法,它的缺点就是造成电梯任意地寻找楼层,导致极低的电梯吞吐率。

它与 FCFS 调度算法类似,EDF 算法是电梯实时调度算法中最简单的调度算法。

它响应请求队列中时限最早的请求,是其它实时电梯调度算法性能衡量的基准和特例。

2.2 SCAN-EDF 算法

SCAN-EDF 算法是 SCAN 算法和 EDF 算法相结合的产物。SCAN-EDF 算法先按照 EDF 算法选择请求列队中哪一个是下一个服务对象,而对于具有相同时限的请求,则按照 SCAN 算法服务每一个请求。它的效率取决于有相同 deadline 的数目,因而效率是有限的。

2.3 PI 算法

PI(Priority Inversion)算法将请求队列中的请求分成两个优先级,它首先保证高优先级队列中的请求得到及时响应,再搞优先级队列为空的情况下在相应地优先级队列中的请求。

2.4 FD-SCAN 算法

FD-SCAN(Feasible Deadline SCAN)算法首先从请求队列中找出时限最早、从当前位置开始移动又可以买足其时限要求的请求,作为下一次 SCAN 的方向。

并在电梯所在楼层向该请求信号运行的过程中响应处在与电梯运行方向相同且电梯可以经过的请求信号。

这种算法忽略了用 SCAN 算法相应其它请求的开销,因此并不能确保服务对象时限最终得到满足。

电梯调度高水平研究

以上两结介绍了几种简单的电梯调度算法。

但是并不是说目前电梯调度只发展到这个层次。目前电梯的控制技术已经进入了电梯群控的时代。

随着微机在电梯系统中的应用和人工智能技术的发展,智能群控技术得以迅速发展起来。

由此,电梯的群控方面陆续发展出了一批新方法,包括:基于专家系统的电梯群控方法、基于模糊逻辑的电梯群控方法、基于遗产算法的电梯群控方法、基于胜景网络的电梯群控方法和基于模糊神经网络的电梯群控方法。

电梯问题的需求分析

4.1 电梯的初始状态

本人设置的电梯的初始状态,是对住宅楼的电梯的设置。

(1)建筑共有21层,其中含有地下一层(地下一层为停车场)。

(2)建筑内部设有两部电梯,编号分别为A梯、B梯。

(3)电梯内部有23个按钮,其中包括开门按钮、关门按钮和楼层按钮,编号为-1,1,2,3,4……20。

(4)电梯外部含有两个按钮,即向上运行按钮和向下运行按钮。建筑顶层与地下一层例外,建筑顶层只设置有向下运行按钮,地下一层只设置有向上运行按钮。

(5)电梯开关门完成时间设定为1秒。电梯到达每层后上下人的时间设定为8秒。电梯从静止开始运行到下一层的时间设置为2秒,而运行中通过一层的时间为1秒。

(6)在凌晨2:00——4:30之间,如若没有请求信号,A梯自动停在14层,B梯自动停在6层。

(7)当电梯下到-1层后,如果没有请求信号,电梯自动回到1层。

4.2 电梯基本功能

每一架电梯都有一个编号,以方便监控与维修。每一架电梯都有一实时监控器,负责监控电梯上下,向电梯升降盒发送启动、制动、加速、减速、开关电梯门的信号。若电梯发生故障,还应向相应的电梯负责人发送求救信号。

4.3 电梯按钮功能

电梯内部的楼层按钮:电梯内部对应每一个楼层的按钮成为楼层按钮,即本章第一结提到的编号为 -1,1,2,3,4……20的按钮。当乘客进入电梯后按下楼层按钮,此按钮显示灰色,代表不可以用。

这样就表示乘客将要去往此层,电梯将开往相应层。当电梯到达该层后,按钮恢复可以使用状态。

电梯内部开门按钮:当电梯达到乘客想要去往的某楼层后,乘客需要准备离开电梯,当电梯停稳后,乘客可以按下开门按钮,电梯门将打开,让用户离开。

如若电梯到了乘客曾经按下的楼层,但是无乘客按开门按钮,电梯将自动在停稳后1秒后自动开门。

电梯内部关门按钮:当所有想要乘坐电梯的乘客都进入电梯以后,准备让电梯开始运行的时候,乘客需要按下关门按钮,让电梯门关闭,使电梯进入运行状态。设置电梯的自动关门时间为8秒。

电梯外部向上按钮:此按钮表示上楼请求,当按下此按钮时,如果电梯到达按下此按钮的楼层,且电梯运行方向是向上的,那么电梯响将停下,并在电梯停稳之后自动开门,此请求被响应后,取消此请求信号。

电梯外部向下按钮:此按钮表示下楼请求,当按下此按钮时,如果电梯到达按下此按钮的楼层,且电梯运行方向是向下的,那么电梯响将停下,并在电梯停稳之后自动开门,此请求被响应后,取消此请求信号。

结束语

你肯能意识到哪个算法都不是一个最佳方案,只是它确实解决了一定情况的问题。

但是对一个优秀的程序员而言,研究各种算法是无比快乐的。也许你下一次面试,就有关于调度算法的问题。

原文发布于微信公众号 - GitChat精品课(CSDN_Tech)

原文发表时间:2018-05-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

最新Apache Spark平台的NLP库,助你轻松搞定自然语言处理任务

【导读】这篇博文介绍了Apache Spark框架下的一个自然语言处理库,博文通俗易懂,专知内容组整理出来,希望大家喜欢。 ▌引言 ---- Apache S...

5678
来自专栏州的先生

Python快速搭建会学习的微信聊天机器人

2461
来自专栏IT技术精选文摘

基于Redis的推荐系统开发

介绍 推荐系统并不总是需要用到复杂的机器学习技术.只要手头上有足够的数据,你就可以花很少的功夫开发一个推荐系统.一个最简单的推荐系统可以只是从用户感兴趣的表中查...

6698
来自专栏腾讯移动品质中心TMQ的专栏

侦探养成技:如何追溯分析一个线上缺陷

前言 对于数学问题,自己想出答案和确认别人的答案是否正确,哪一个更简单,或者困难到何种程度。拟一个别人无法解答的问题和解开那个问题,何者更困难?——东野圭吾 《...

1979
来自专栏量子位

无人驾驶那么难,个人应该如何研究?

作者:陈光 上汽集团 | 高精度地图&环境建模工程师 量子位 已获授权编辑发布 转载请联系原作者 作为一个在公司义务给应届生和实习生培训的“小师”,结合我自己学...

3944
来自专栏Crossin的编程教室

用程序帮你炒股(2)

6月26日A股大跌,据估算市值蒸发4.5万亿。当日的领涨板块,你们感受一下: 银行 -4.66% 食品饮料 -6.94% 建筑装饰 -7.14% 有入市的...

3967
来自专栏张善友的专栏

MindManager: Draw your own MindMap!

─ 什么是 MindMap ? MindMap 是一种看起来很像树形图的东西,不过比树形图还强力得多(笑)。 一般人在记笔记、或规划事情的时候,多半只有两种方法...

1908
来自专栏韩伟的专栏

在游戏上使用面向目标行为规划系统

本文为本人的翻译文章,原文《Applying Goal-Oriented Planning for Games 》连接为: http://alumni.me...

3337
来自专栏机器学习从入门到成神

2017美国数学建模ICM D题 优化机场安全的乘客吞吐量检查点(Optimizing the Passenger Throughput at an Airport Security Checkpo)

2001年9月11日美国发生恐怖袭击事件之后,机场安全问题在世界各地得到显著增强。 机场有安全检查站,乘客和他们的行李会被筛查爆炸物和其他危险项目。 这些安全措...

2013
来自专栏吾真本

致想给遗留系统写自动化单元测试的开发团队——事件风暴之父的工作坊实录之二:软件开发设计

一家大型企业的关键业务代码已经年久失修成为了难以维护的遗留代码,有着硅谷高科技企业软件开发管理经验的高管决定在企业内部搞编写单元测试和重构的极限编程实践。这需要...

823

扫码关注云+社区

领取腾讯云代金券