专栏首页IT派Python的22个编程技巧,简化 if 语句、开启文件分享……

Python的22个编程技巧,简化 if 语句、开启文件分享……

1. 原地交换两个数字

Python 提供了一个直观的在一行代码中赋值与交换(变量值)的方法,请参见下面的示例:

x,y= 10,20

print(x,y)

x,y= y,x

print(x,y)

#1 (10, 20)

#2 (20, 10)

赋值的右侧形成了一个新的元组,左侧立即解析(unpack)那个(未被引用的)元组到变量

一旦赋值完成,新的元组变成了未被引用状态并且被标记为可被垃圾回收,最终也完成了变量的交换。

2. 链状比较操作符

比较操作符的聚合是另一个有时很方便的技巧:

n= 10
result= 1< n< 20
print(result)
# True
result= 1> n<= 9
print(result)
# False

3. 使用三元操作符来进行条件赋值

三元操作符是 if-else 语句也就是条件操作符的一个快捷方式:

[表达式为真的返回值] if [表达式] else [表达式为假的返回值]

这里给出几个你可以用来使代码紧凑简洁的例子。下面的语句是说“如果 y 是 9,给 x 赋值 10,不然赋值为 20”。如果需要的话我们也可以延长这条操作链。

x = 10 if (y == 9) else 20

同样地,我们可以对类做这种操作:

x = (classA if y == 1 else classB)(param1, param2)

在上面的例子里 classA 与 classB 是两个类,其中一个类的构造函数会被调用。

下面是另一个多个条件表达式链接起来用以计算最小值的例子:

def small(a,b,c):
returnaifa<= banda<= celse(bifb<= aandb<= celsec)
print(small(1,0,1))
print(small(1,2,2))
print(small(2,2,3))
print(small(5,4,3))
#Output
#0 #1 #2 #3

我们甚至可以在列表推导中使用三元运算符:

[m**2 if m > 10 else m**4 for m in range(50)]
#=> [0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401]

4. 多行字符串

基本的方式是使用源于 C 语言的反斜杠:

multiStr= “select * from multi_row
where row_id < 5”
print(multiStr)
# select * from multi_row where row_id < 5

另一个技巧是使用三引号:

multiStr= “””select * from multi_row
where row_id < 5″””
print(multiStr)
#select * from multi_row
#where row_id < 5

上面方法共有的问题是缺少合适的缩进,如果我们尝试缩进会在字符串中插入空格。所以最后的解决方案是将字符串分为多行并且将整个字符串包含在括号中:

multiStr= (“select * from multi_row ”
“where row_id < 5 ”
“order by age”)
print(multiStr)
#select * from multi_row where row_id < 5 order by age

5. 存储列表元素到新的变量中

我们可以使用列表来初始化多个变量,在解析列表时,变量的数目不应该超过列表中的元素个数:【译者注:元素个数与列表长度应该严格相同,不然会报错】

testList= [1,2,3]
x,y,z= testList
print(x,y,z)
#-> 1 2 3

6. 打印引入模块的文件路径

如果你想知道引用到代码中模块的绝对路径,可以使用下面的技巧:

import threading
import socket
print(threading)
print(socket)
#1-
#2-

7. 交互环境下的 “_” 操作符

这是一个我们大多数人不知道的有用特性,在 Python 控制台,不论何时我们测试一个表达式或者调用一个方法,结果都会分配给一个临时变量: _(一个下划线)。

>>> 2+ 1
3
>>> _
3
>>> print_
3

“_” 是上一个执行的表达式的输出。

8. 字典/集合推导

与我们使用的列表推导相似,我们也可以使用字典/集合推导,它们使用起来简单且有效,下面是一个例子:

testDict= {i: i *iforiinxrange(10)}
testSet= {i *2foriinxrange(10)}
print(testSet)
print(testDict)
#set([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
#{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

注:两个语句中只有一个 <:> 的不同,另,在 Python3 中运行上述代码时,将 改为 。

9. 调试脚本

我们可以在 模块的帮助下在 Python 脚本中设置断点,下面是一个例子:

import pdb
pdb.set_trace()

我们可以在脚本中任何位置指定 并且在那里设置一个断点,相当简便。

10. 开启文件分享

Python 允许运行一个 HTTP 服务器来从根路径共享文件,下面是开启服务器的命令:

# Python 2

python -m SimpleHTTPServer

# Python 3

python3 -m http.server

上面的命令会在默认端口也就是 8000 开启一个服务器,你可以将一个自定义的端口号以最后一个参数的方式传递到上面的命令中。

11. 检查 Python 中的对象

我们可以通过调用 dir() 方法来检查 Python 中的对象,下面是一个简单的例子:

test= [1,3,5,7]
print(dir(test))

[‘add__’, ‘_class_’, ‘_contains_’, ‘_delattr_’, ‘_delitem_’, ‘_delslice_’, ‘_doc_’, ‘_eq_’, ‘_format_’, ‘_ge_’, ‘_getattribute_’, ‘_getitem_’, ‘_getslice_’, ‘_gt_’, ‘_hash_’, ‘_iadd_’, ‘_imul_’, ‘_init_’, ‘_iter_’, ‘_le_’, ‘_len_’, ‘_lt_’, ‘_mul_’, ‘_ne_’, ‘_new_’, ‘_reduce_’, ‘_reduce_ex_’, ‘_repr_’, ‘_reversed_’, ‘_rmul_’, ‘_setattr_’, ‘_setitem_’, ‘_setslice_’, ‘_sizeof_’, ‘_str_’, ‘__subclasshook’, ‘append’, ‘count’, ‘extend’, ‘index’, ‘insert’, ‘pop’, ‘remove’, ‘reverse’, ‘sort’]

12. 简化 if 语句

我们可以使用下面的方式来验证多个值:

if m in [1,3,5,7]:
而不是:
if m==1 or m==3 or m==5 or m==7:

或者,对于 in 操作符我们也可以使用 ‘{1,3,5,7}’ 而不是 ‘[1,3,5,7]’,因为 set 中取元素是 O(1) 操作。

13. 一行代码计算任何数的阶乘

Python 2.x.
result= (lambdak: reduce(int.__mul__,range(1,k+1),1))(3)
print(result)
#-> 6

Python 3.x.

import functools
result= (lambdak: functools.reduce(int.__mul__,range(1,k+1),1))(3)
print(result)
#-> 6

14. 找到列表中出现最频繁的数

test= [1,2,3,4,2,2,3,1,4,4,4]
print(max(set(test),key=test.count))
#-> 4

15. 重置递归限制

Python 限制递归次数到 1000,我们可以重置这个值:

import sys
x=1001
print(sys.getrecursionlimit())
sys.setrecursionlimit(x)
print(sys.getrecursionlimit())
#1-> 1000
#2-> 1001

请只在必要的时候采用上面的技巧。

16. 检查一个对象的内存使用

在 Python 2.7 中,一个 32 比特的整数占用 24 字节,在 Python 3.5 中利用 28 字节。为确定内存使用,我们可以调用 getsizeof 方法:

在 Python 2.7 中

import sys
x=1
print(sys.getsizeof(x))
#-> 24
在 Python 3.5 中
import sys
x=1
print(sys.getsizeof(x))
#-> 28

17. 使用 slots 来减少内存开支

你是否注意到你的 Python 应用占用许多资源特别是内存?有一个技巧是使用 slots类变量来在一定程度上减少内存开支。

import sys
classFileSystem(object):
def __init__(self,files,folders,devices):
self.files= files
self.folders= folders
self.devices= devices
print(sys.getsizeof(FileSystem))
classFileSystem1(object):
__slots__= [‘files’,’folders’,’devices’]
def __init__(self,files,folders,devices):
self.files= files
self.folders= folders
self.devices= devices
print(sys.getsizeof(FileSystem1))
#In Python 3.5
#1-> 1016
#2-> 888

很明显,你可以从结果中看到确实有内存使用上的节省,但是你只应该在一个类的内存开销不必要得大时才使用 slots。只在对应用进行性能分析后才使用它,不然地话,你只是使得代码难以改变而没有真正的益处。

【译者注:在我的 win10 python2.7 中上面的结果是:

#In Python 2.7 win10
#1-> 896
#2-> 1016

所以,这种比较方式是不那么让人信服的,使用 slots 主要是用以限定对象的属性信息,另外,当生成对象很多时花销可能会小一些,具体可以参见 python 官方文档:

The slots declaration takes a sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space is saved because dict is not created for each instance. 】

18. 使用 lambda 来模仿输出方法

import sys
lprint=lambda *args:sys.stdout.write(” “.join(map(str,args)))
lprint(“python”,”tips”,1000,1001)
#-> python tips 1000 1001

19.从两个相关的序列构建一个字典

t1= (1,2,3)
t2= (10,20,30)
print(dict(zip(t1,t2)))
#-> {1: 10, 2: 20, 3: 30}

20. 一行代码搜索字符串的多个前后缀

print(“http://www.google.com”.startswith((“http://”,”https://”)))
print(“http://www.google.co.uk”.endswith((“.com”,”.co.uk”)))
#1-> True
#2-> True

不使用循环构造一个列表

import itertools
test= [[-1,-2],[30,40],[25,35]]
print(list(itertools.chain.from_iterable(test)))
#-> [-1, -2, 30, 40, 25, 35]

22. 在 Python 中实现一个真正的 switch-case 语句

下面的代码使用一个字典来模拟构造一个 switch-case。

def xswitch(x):
returnxswitch._system_dict.get(x,None)
xswitch._system_dict= {‘files’: 10,’folders’: 5,’devices’: 2}
print(xswitch(‘default’))
print(xswitch(‘devices’))
#1-> None
#2-> 2

本文分享自微信公众号 - IT派(transfer_3255716726)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-05-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 程序员必知的 Python 陷阱与缺陷列表

    我个人对陷阱的定义是这样的:代码看起来可以工作,但不是以你“想当然”的方式。如果一段代码直接出错,抛出了异常,我不认为这是陷阱。比如,Python程序员应该都遇...

    IT派
  • 春招苦短,我用百道Python面试题备战

    在这个项目中,作者 kenwoodjw 准备了近 300 道 Python 面试题,同时还包含解决方案与代码。作者主要从 Python 基础、高级语句、网页应用...

    IT派
  • Python 机器学习:多元线性回归

    当y值的影响因素不唯一时,采用多元线性回归模型。例如商品的销售额可能不电视广告投入,收音机广告投入,报纸广告投入有关系,可以有 sales =β0+β1*TV+...

    IT派
  • (面试题)python面试题集锦-附答案

      GIL是python的全局解释器锁,在一个进程中如果有多个线程执行,其中一个线程在执行的时候会霸占python解释器(加锁即GIL),那么其他线程就不能执行...

    py3study
  • Python基础01 Hello World!

    简单的‘Hello World!’ Python命令行 假设你已经安装好了Python, 那么在Linux命令行输入: $python 将直接进入python。...

    Vamei
  • python isinstance和is

    py3study
  • 【专业技术】linux下如何打造一个最简单的Makefile

    相信在linux下编程的没有不知道makefile的,刚开始学习unix平台 下的东西,了解了下makefile的制作,觉得有点东西可以记录下。   下...

    程序员互动联盟
  • 2019年学习Python-day1作业

    好久没写文章了,最近信用卡欠款十几万 一个疫情差点搞的我信用破产,哎!不说了,这几天在贴吧帮新学弟们做解答,把题目拉过来供大家看看吧。

    qq317062516
  • Python3断言和常见异常

    我们看到,当条件为true时,断言成功,程序会继续向下执行。当条件为 false 触发异常,断言失败,程序报错

    织幻妖
  • 【Python从零到壹】转义字符与原字符

    ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210402202259666.png)

    互联网老辛

扫码关注云+社区

领取腾讯云代金券