前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow实现Attention机制

TensorFlow实现Attention机制

作者头像
用户1332428
发布2018-07-30 15:37:00
9000
发布2018-07-30 15:37:00
举报
文章被收录于专栏:人工智能LeadAI人工智能LeadAI

正文共996个字,10张图,预计阅读时间15分钟。

原理介绍

图片1

图片2

图片3

更多资料: https://distill.pub/2016/augmented-rnns/#attentional-interfaces https://www.cnblogs.com/shixiangwan/p/7573589.html#top

http://baijiahao.baidu.com/s?id=1587926245504773589&wfr=spider&for=pc

论文阅读

Hierarchical Attention Networks for Document Classification(http://www.aclweb.org/anthology/N16-1174)

这篇文章主要讲述了基于Attention机制实现文本分类

假设我们有很多新闻文档,这些文档属于三类:军事、体育、娱乐。其中有一个文档D有L个句子si(i代表s是文档D的第i个句子),每个句子包含Ti个词(word),wit代表第i个句子的word,t∈[0,T]

Word Encoder:

①给定一个句子si,例如 The superstar is walking in the street,由下面表示[wi1,wi2,wi3,wi4,wi5,wi6,wi1,wi7],我们使用一个词嵌入矩阵W将单词编码为向量

②使用双向GRU编码整个句子关于单词wit的隐含向量:

那么最终隐含向量为前向隐含向量和后向隐含向量拼接在一起

Word Attention:

给定一句话,并不是这个句子中所有的单词对个句子语义起同等大小的“贡献”,比如上句话“The”,“is”等,这些词没有太大作用,因此我们需要使用attention机制来提炼那些比较重要的单词,通过赋予权重以提高他们的重要性。

①通过一个MLP获取hit的隐含表示:

②通过一个softmax函数获取归一化的权重:

③计算句子向量:

通过每个单词获取的hit与对应权重αit乘积,然后获取获得句子向量

代码实现

代码语言:javascript
复制
  1attenton.py
  2import tensorflow as tf
  3def attention(inputs, attention_size, time_major=False, return_alphas=False):
  4 if isinstance(inputs, tuple):
  5# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
  6inputs = tf.concat(inputs, 2)
  7if time_major:
  8# (T,B,D) => (B,T,D)
  9inputs = tf.array_ops.transpose(inputs, [1, 0, 2])
 10hidden_size = inputs.shape[2].value  # D value - hidden size of the RNN layer
 11# Trainable parameters
 12w_omega = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
 13b_omega = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
 14u_omega = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
 15with tf.name_scope('v'):
 16# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
 17#  the shape of `v` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
 18v = tf.tanh(tf.tensordot(inputs, w_omega, axes=1) + b_omega)
 19# For each of the timestamps its vector of size A from `v` is reduced with `u` vector
 20vu = tf.tensordot(v, u_omega, axes=1, name='vu')  # (B,T) shape
 21alphas = tf.nn.softmax(vu, name='alphas')         # (B,T) shape
 22# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
 23output = tf.reduce_sum(inputs * tf.expand_dims(alphas, -1), 1)
 24if not return_alphas:
 25return output
 26else:
 27return output, alphas
 28train.py
 29from __future__ import print_function, division
 30import numpy as np
 31import tensorflow as tf
 32from keras.datasets import imdb
 33from tensorflow.contrib.rnn import GRUCell
 34from tensorflow.python.ops.rnn import   bidirectional_dynamic_rnn as bi_rnn
 35from tqdm import tqdm
 36from attention import attention
 37from utils import get_vocabulary_size, fit_in_vocabulary, zero_pad, batch_generator
 38NUM_WORDS = 10000
 39INDEX_FROM = 3
 40SEQUENCE_LENGTH = 250
 41EMBEDDING_DIM = 100
 42HIDDEN_SIZE = 150
 43ATTENTION_SIZE = 50
 44KEEP_PROB = 0.8
 45BATCH_SIZE = 256
 46NUM_EPOCHS = 3  # Model easily overfits without pre-trained words embeddings, that's why train for a few epochs
 47 DELTA = 0.5
 48 MODEL_PATH = './model'
 49# Load the data set
 50(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=NUM_WORDS, index_from=INDEX_FROM)
 51# Sequences pre-processing
 52vocabulary_size = get_vocabulary_size(X_train)
 53X_test = fit_in_vocabulary(X_test, vocabulary_size)
 54X_train = zero_pad(X_train, SEQUENCE_LENGTH)
 55X_test = zero_pad(X_test, SEQUENCE_LENGTH)
 56# Different placeholders
 57with tf.name_scope('Inputs'):
 58batch_ph = tf.placeholder(tf.int32, [None,  SEQUENCE_LENGTH], name='batch_ph')
 59target_ph = tf.placeholder(tf.float32, [None], name='target_ph')
 60seq_len_ph = tf.placeholder(tf.int32, [None], name='seq_len_ph')
 61 keep_prob_ph = tf.placeholder(tf.float32, name='keep_prob_ph')
 62 # Embedding layer
 63 with tf.name_scope('Embedding_layer'):
 64 embeddings_var = tf.Variable(tf.random_uniform([vocabulary_size, EMBEDDING_DIM], -1.0, 1.0), trainable=True)
 65 tf.summary.histogram('embeddings_var', embeddings_var)
 66 batch_embedded = tf.nn.embedding_lookup(embeddings_var, batch_ph)
 67 # (Bi-)RNN layer(-s)
 68 rnn_outputs, _ = bi_rnn(GRUCell(HIDDEN_SIZE), GRUCell(HIDDEN_SIZE),
 69                inputs=batch_embedded, sequence_length=seq_len_ph, dtype=tf.float32)
 70 tf.summary.histogram('RNN_outputs', rnn_outputs)
 71 # Attention layer
 72 with tf.name_scope('Attention_layer'):
 73 attention_output, alphas = attention(rnn_outputs, ATTENTION_SIZE, return_alphas=True)
 74 tf.summary.histogram('alphas', alphas)
 75 # Dropout
 76 drop = tf.nn.dropout(attention_output, keep_prob_ph)
 77 # Fully connected layer
 78 with tf.name_scope('Fully_connected_layer'):
 79 W = tf.Variable(tf.truncated_normal([HIDDEN_SIZE * 2, 1], stddev=0.1))  # Hidden size is multiplied by 2 for Bi-RNN
 80 b = tf.Variable(tf.constant(0., shape=[1]))
 81 y_hat = tf.nn.xw_plus_b(drop, W, b)
 82 y_hat = tf.squeeze(y_hat)
 83 tf.summary.histogram('W', W)
 84 with tf.name_scope('Metrics'):
 85 # Cross-entropy loss and optimizer initialization
 86 loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_hat, labels=target_ph))
 87  tf.summary.scalar('loss', loss)
 88  optimizer = tf.train.AdamOptimizer(learning_rate=1e-3).minimize(loss)
 89  # Accuracy metric
 90  accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.round(tf.sigmoid(y_hat)), target_ph), tf.float32))
 91  tf.summary.scalar('accuracy', accuracy)
 92  merged = tf.summary.merge_all()
 93  # Batch generators
 94  train_batch_generator = batch_generator(X_train, y_train, BATCH_SIZE)
 95  test_batch_generator = batch_generator(X_test, y_test, BATCH_SIZE)
 96  train_writer = tf.summary.FileWriter('./logdir/train', accuracy.graph)
 97  test_writer = tf.summary.FileWriter('./logdir/test', accuracy.graph)
 98  session_conf = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
 99  saver = tf.train.Saver()
100  if __name__ == "__main__":
101  with tf.Session(config=session_conf) as sess:
102  sess.run(tf.global_variables_initializer())
103  print("Start learning...")
104  for epoch in range(NUM_EPOCHS):
105  loss_train = 0
106  loss_test = 0
107  accuracy_train = 0
108  accuracy_test = 0
109  print("epoch: {}\t".format(epoch), end="")
110  # Training
111  num_batches = X_train.shape[0] // BATCH_SIZE
112  for b in tqdm(range(num_batches)):
113        x_batch, y_batch = next(train_batch_generator)
114        seq_len = np.array([list(x).index(0) + 1 for x in x_batch])  # actual lengths of sequences
115        loss_tr, acc, _, summary = sess.run([loss, accuracy, optimizer, merged],
116        feed_dict={batch_ph: x_batch,                                                        target_ph: y_batch,                                                         seq_len_ph: seq_len,                                                         keep_prob_ph: KEEP_PROB})
117accuracy_train += acc
118loss_train = loss_tr * DELTA + loss_train * (1 - DELTA)
119train_writer.add_summary(summary, b + num_batches * epoch)
120accuracy_train /= num_batches
121    # Testing
122    num_batches = X_test.shape[0] // BATCH_SIZE
123    for b in tqdm(range(num_batches)):
124        x_batch, y_batch = next(test_batch_generator)
125        seq_len = np.array([list(x).index(0) + 1 for x in x_batch])  # actual lengths of sequences
126        loss_test_batch, acc, summary = sess.run([loss, accuracy, merged],                                                 feed_dict={batch_ph: x_batch,                                                                 target_ph: y_batch,                                                              seq_len_ph: seq_len,                                                              keep_prob_ph: 1.0})
127        accuracy_test += acc
128        loss_test += loss_test_batch
129        test_writer.add_summary(summary, b + num_batches * epoch)
130    accuracy_test /= num_batches
131    loss_test /= num_batches
132    print("loss: {:.3f}, val_loss: {:.3f}, acc: {:.3f}, val_acc: {:.3f}".format(
133        loss_train, loss_test, accuracy_train, accuracy_test
134    ))
135train_writer.close()
136test_writer.close()
137saver.save(sess, MODEL_PATH)
138print("Run 'tensorboard --logdir=./logdir' to checkout tensorboard logs.")
139utils.py
140from __future__ import print_function
141import numpy as np
142def zero_pad(X, seq_len):
143return np.array([x[:seq_len - 1] + [0] * max(seq_len - len(x), 1) for x in X])
144 def get_vocabulary_size(X):
145 return max([max(x) for x in X]) + 1  # plus the 0th word
146 def fit_in_vocabulary(X, voc_size):
147 return [[w for w in x if w < voc_size] for x in X]
148 def batch_generator(X, y, batch_size):
149 """Primitive batch generator 
150 """
151 size = X.shape[0]
152 X_copy = X.copy()
153 y_copy = y.copy()
154 indices = np.arange(size)
155 np.random.shuffle(indices)
156 X_copy = X_copy[indices]
157 y_copy = y_copy[indices]
158 i = 0
159 while True:
160if i + batch_size <= size:
161    yield X_copy[i:i + batch_size], y_copy[i:i + batch_size]
162    i += batch_size
163else:
164    i = 0
165    indices = np.arange(size)
166    np.random.shuffle(indices)
167    X_copy = X_copy[indices]
168    y_copy = y_copy[indices]
169    continue
170if __name__ == "__main__":
171# Test batch generator
172gen = batch_generator(np.array(['a', 'b', 'c', 'd']), np.array([1, 2, 3, 4]), 2)
173for _ in range(8):
174xx, yy = next(gen)
175print(xx, yy)

代码地址:https://github.com/ilivans/tf-rnn-attention

运行结果

在训练集上准确率达到96%,测试集达到86%,效果还是很强大。

原文链接:https://www.jianshu.com/p/cc6407444a8c

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-06-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 人工智能LeadAI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档