# 1043. Is It a Binary Search Tree (25)

400 ms

32000 kB

16000 B

Standard

CHEN, Yue

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

• The left subtree of a node contains only nodes with keys less than the node's key.
• The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
• Both the left and right subtrees must also be binary search trees.

If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line "YES" if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or "NO" if not. Then if the answer is "YES", print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

```7
8 6 5 7 10 8 11```

Sample Output 1:

```YES
5 7 6 8 11 10 8```

Sample Input 2:

```7
8 10 11 8 6 7 5```

Sample Output 2:

```YES
11 8 10 7 5 6 8```

Sample Input 3:

```7
8 6 8 5 10 9 11```

Sample Output 3:

`NO`
```#include<stdio.h>
#include<stdlib.h>
/*效率太低，有待改进*/
int isBST(int *a,int count)
{
if(count==1 || count==0)
return 1;
int i,k;
for(i=1;i<count;i++)
{
if(a[i]<a[0])
continue;
break;
}
k=i-1;
for(;i<count;i++)
{
if(a[i]<a[0])
return 0;
}
if(isBST(a+1,k)==1 && isBST(a+k+1,count-k-1)==1)
return 1;
return 0;
}

int isMirror(int *a,int count)
{
if(count==1 || count==0)
return 1;
int i,k;
for(i=1;i<count;i++)
{
if(a[i]>=a[0])
continue;
break;
}
k=i-1;
for(;i<count;i++)
{
if(a[i]>=a[0])
return 0;
}
if(isMirror(a+1,k)==1 && isMirror(a+k+1,count-k-1)==1)
return 1;
return 0;
}

void postorder(int *a,int count,int level)
{
if(count==0)
return ;
if(count==1)
{
printf("%d",a[0]);
if(level!=0)
printf(" ");
return ;
}
int i,k;
for(i=1;i<count;i++)
{
if(a[i]<a[0])
continue;
break;
}
k=i-1;

postorder(a+1,k,level+1);
postorder(a+k+1,count-k-1,level+1);
printf("%d",a[0]);
if(level!=0)
printf(" ");
}

void postorderMirror(int *a,int count,int level)
{
if(count==0)
return ;
if(count==1)
{
printf("%d",a[0]);
if(level!=0)
printf(" ");
return ;
}
int i,k;
for(i=1;i<count;i++)
{
if(a[i]>=a[0])
continue;
break;
}
k=i-1;

postorderMirror(a+1,k,level+1);
postorderMirror(a+k+1,count-k-1,level+1);
printf("%d",a[0]);
if(level!=0)
printf(" ");
}

int main()
{
int n,i;
scanf("%d",&n);
int * a=(int *)malloc(n*sizeof(int));
for(i=0;i<n;i++)
scanf("%d",&a[i]);
if(isBST(a,n)==1)
{
printf("YES\n");
postorder(a,n,0);
}
else if(isMirror(a,n)==1)
{
printf("YES\n");
postorderMirror(a,n,0);
}
else
printf("NO\n");
free(a);
return 0;
}```

66 篇文章34 人订阅

0 条评论

## 相关文章

### 236. Lowest Common Ancestor of a Binary Tree

2374

Given a non-negative integer num, repeatedly add all its digits until the resul...

2025

841

1481

1085

1131

### 数据结构 第13讲 三元组 (F、C、L/R) 序列创建二叉树

/* 输入三元组 (F、C、L/R) 序列输入一棵二叉树的诸边(其中 F 表示双亲结点的标识，C 表示孩子结点标识，L/R...

3123

2705

3266

1032