科技正在以一种近乎革命性的手段解决生活中真实存在的难题。人工智能的出现,重新定义了文物保护的方法,克服了传统方式中的困难和挑战,以更快、更高效的方式解决凭借人力无法解决的问题。
通过英特尔人工智能技术、深度学习技术、无人机技术等,如何实现对于箭扣长城的保护与修缮?答案就在视频里。
这将是一个全新的探索,先进的无人机航拍和人工智能技术参与文物建筑的修缮和保护,英特尔的计算技术深度参与其中。数据显示,仅仅700米的长城城墙,猎鹰8+无人机采集了上万张高分辨率图像,原始数据超过200GB,整个处理过程会频繁访问这些数据,还会产生超过100GB的中间和仿真数据,即便是高性能的计算,处理如此庞大的数据量也极其复杂。
解决方案还涉及多种AI算法,包括视觉特征抽取与索引,相机参数恢复,光束平差(bundle adjustment),稠密匹配,几何模型网格生成,深度神经网络2D及3D模型训练,纹理合成等。
英特尔的方案是,基于Xeon至强可扩展处理器,英特尔固态盘,同时结合OpenMP/MPI并行优化技术,采用针对英特尔CPU优化的英特尔®深度神经网络数学核心函数库(MKL-DNN),以及面向英特尔架构优化的深度学习框架Tensorflow等工具,高效地实现长城3D建模和数字化修复,并达到厘米级精度的效果。
整个长城3D建模和数字化修复过程中,需要进行大规模的方程迭代计算,其中一些基于大规模稀疏矩阵的方程求解会存在收敛稳定性问题。这个时候,大规模矩阵计算库MKL的作用就凸现了,它不仅能够提升计算效率,还能够大大提高复杂计算的稳定性。
如今,英特尔开发的MKL-DNN库已经广泛应用在Tensorflow,Caffe等流行的深度学习框架中。可以说,针对深度学习领域不同算法实现的解决方案中,英特尔至强架构是能够全面高效、低成本支持这么多种算法的理想选择,并可以明显提高人工智能修缮长城的效率和速度。
有了更领先的技术和更精准的数据,我们创造了更快、更高效的解决问题的办法,帮助各行各业解决那些尚未解决的问题。