[计算机视觉论文速递] ECCV 2018 专场3

前戏

Amusi 将日常整理的论文都会同步发布到 daily-paper-computer-vision 上。名字有点露骨,还请见谅。喜欢的童鞋,欢迎star、fork和pull。

直接点击“阅读全文”即可访问daily-paper-computer-vision。

link: https://github.com/amusi/daily-paper-computer-vision

如果说在AI届或者CV圈,现在议论什么的最多,莫过于ICML 2018、IJCAI 2018和ACL 2018。但本文并不会介绍这里的文章,而是介绍将于2018年9月召开的ECCV 2018的部分paper。ECCV 2018是计算机视觉领域中的顶级会议,目前已经公开了部分已录用的paper。之前已经推送了第一篇ECCV 2018论文速递推文:

[计算机视觉论文速递] 2018-07-19 ECCV 2018专场1

[计算机视觉论文速递] ECCV 2018 专场2

Data Augmentation

《Modeling Visual Context is Key to Augmenting Object Detection Datasets》

ECCV 2018

Examples of data-augmented training examples produced by our approach

Illustration of our data augmentation approach

Abstract:众所周知,用于深度神经网络的数据增广(data augmentation)对于训练视觉识别系统是十分重要的。通过人为增加训练样本的数量,它有助于减少过度拟合并改善泛化。对于物体检测(object detection),用于数据增强的经典方法包括生成通过基本几何变换和原始训练图像的颜色变化获得的图像。在这项工作中,我们更进一步,利用 segmentation annotations 来增加训练数据上存在的对象实例的数量。为了使这种方法获得成功,我们证明,适当地建模对象周围的视觉上下文( visual context )对于将它们放置在正确的环境中至关重要。否则,我们会发现之前的策略确实会受到伤害。通过我们的上下文(context)模型,当VOC'12基准测试中很少有标记示例可用时,我们实现了显著的平均精度改进。

arXiv:https://arxiv.org/abs/1807.07428

注:很有魔性的论文,很多人曾经应该想过如何把Object嵌入到图像中,但至于如何实现,这就体现工作量。不知道GAN是否可以突破一下~

Face Recognition

《From Face Recognition to Models of Identity: A Bayesian Approach to Learning about Unknown Identities from Unsupervised Data》

ECCV 2018

Face recognition settings

Overview of the proposed generative model

Abstract:当前的面部识别系统可以在各种成像条件下稳健地识别身份。在这些系统中,通过分类到从监督身份标记获得的已知身份来执行识别。这个当前范例存在两个问题:(1)current systems are unable to benefit from unlabelled data which may be available in large quantities; (2)当前系统将成功识别等同于给定输入图像的标记。另一方面,人类会对完全无监督的个体进行识别,即使没有能够命名该个体,也要认识到他们之前见过的人的身份。我们如何超越当前的分类范式,更加人性化地理解身份?我们提出了一个综合的贝叶斯模型,该模型连贯地推理观察到的图像,身份,名称的部分知识以及每个观察的情境背景。我们的模型不仅对已知身份获得了良好的识别性能,它还可以从无监督数据中发现新身份,并学习将身份与不同情境联系起来,这取决于哪些身份倾向于一起观察。此外,提出的半监督组件不仅能够处理熟人的名字,而且还能够处理统一框架中未标记的熟悉面孔和完全陌生人。

arXiv:https://arxiv.org/abs/1807.07872

原文发布于微信公众号 - CVer(CVerNews)

原文发表时间:2018-07-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

利用机器学习进行恶意代码分类

72540
来自专栏机器之心

专栏 | 为模型减减肥:谈谈移动/嵌入式端的深度学习

机器之心专栏 作者:李飞 本文为机器之心矽说专栏系列文章之一,对模型压缩进行了深度解读。 1. 为什么要为深度学习模型减肥 随着深度学习的发展,神经网络模...

44980
来自专栏IT派

资源 | textgenrnn:只需几行代码即可训练文本生成网络

通过简简单单的几行代码,使用预训练神经网络生成文本,或者在任意文本数据集上训练你自己的任意规模和复杂度的文本生成神经网络。

20930
来自专栏目标检测和深度学习

16岁高中生夺冠Kaggle地标检索挑战赛!而且竟然是个Kaggle老兵

anokas 赢得了谷歌地标检索挑战赛,在 Reddit 上引起了非常多的讨论,大家都非常关心他的年龄以及是否有其他人帮助。不过在 anokas 的 Kaggl...

13220
来自专栏人工智能头条

应用深度学习时需要思考的问题

17030
来自专栏AI科技评论

学界 | UC伯克利大学AI实验室用一张单色图像生成高质量3D几何结构

AI科技评论按:用图像来重建3D数字几何结构是计算机视觉领域一个非常核心的问题。这种技术在许多领域都有广泛的应用,例如电影制作、视频游戏的内容生成、虚拟现实和增...

41360
来自专栏新智元

15分钟开启你的机器学习之旅——随机森林篇

【新智元导读】本文用一个机器学习评估客户风险水平的案例,从准备数据到测试模型,详解了如何随机森林模型实现目标。 机器学习模型可用于提高效率,识别风险或发现新的机...

399160
来自专栏机器之心

资源 | textgenrnn:只需几行代码即可训练文本生成网络

选自GitHub 作者:minimaxir 机器之心编译 参与:Geek AI、路 本文是一个 GitHub 项目,介绍了 textgenrnn,一个基于 K...

31560
来自专栏PPV课数据科学社区

七种数据分析领域中最为人称道的降维方法

近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数...

35740
来自专栏BestSDK

Google推出黑科技:无需写代码,3分钟学会机器学习

简单的说,Teachable Machine是一个基于浏览器的机器学习演示实验,用一个叫做Deeplearn.js的库构建,网页开发者可以编写一个简单的视觉输入...

39340

扫码关注云+社区

领取腾讯云代金券