前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Facebook开源看图问答模型Pythia:拿下VQA比赛冠军就靠它

Facebook开源看图问答模型Pythia:拿下VQA比赛冠军就靠它

作者头像
量子位
发布2018-08-08 14:34:12
5860
发布2018-08-08 14:34:12
举报
文章被收录于专栏:量子位
夏乙 发自 凹非寺 量子位 报道 | 公众号 QbitAI

——猫戴着什么?

——帽子。

——天气怎么样?

——下雨。

——披萨上面是什么?

——蘑菇。

看图回答这些问题,对我们人类来说再简单不过了,但是要让AI熟练掌握这项技能,还需要探索。

Facebook刚刚为这个领域的探索者们,开源了一个模块化视觉问答框架:Pythia

事情还要从在弗吉尼亚理工大学和乔治亚理工大学主办的视觉问答(Visual Question Ansering)比赛VQA Challenge说起。

比赛上,Facebook AI研究院(FAIR)队伍,A-STAR拿下了冠军。总成绩72.41分,排名第一,在是否(上图的Yes/No)、其他(Other)两类问题上也排名第一,分别拿下了87.7和63.95分,就是数学(Number)成绩差了点,51.51分,不及格,排在第六。

其他的参赛者,回答“是/否”都答得还算不错,回答数字都不及格,而答案五花八门的其他问题,也在及格线上下徘徊。

夺冠的FAIR观察发现,目前的视觉问答(VQA)模型,无外乎这样几个模块:问题编码、图像特征提取、答案空间分类。

于是,他们就想针对VQA领域,打造一个简单的模块化的模型研发平台,说不定还能顺便用在看图对话上。

建造平台的第一步,就是开源了A-STAR参赛所用模型的基础框架:Pythia,目前版本号v0.1。

为Pythia打下基础的,是2017年VQA Challenge冠军,Peter Anderson等人提出的Bottom-Up and Top-Down Attention模型。

Bottom-Up,指的是这个模型以ResNet-101为基干网络,用了Visual Genome数据集预训练的Faster-RCNN,用自底向上的注意力机制来提取图像特征。

而Top-Down,指的是根据问题(当前任务)来计算图像区域上的注意力分布。

在这个模型的基础上,FAIR团队做了一些调整。

比如说,将up-down模型里的双曲正切激活函数换成权重标准化+ReLU,用Adamax来优化模型,增大学习率。又比如,把bottom-up模型里的目标检测模型换成Detectron里的FPN,还对用到的数据集:Visual Genome、Visual Dialog等都做了数据扩增。

每一个模块的优化,都带来了模型性能的提升。

BTW,Facebook参赛队伍和框架的名字都别有深意。

队伍的名字——A-STAR,跟星星没什么关系,它是意思是能看、说话、行动、推理的智能体(Agents that See, Talk, Act, and Reason)

框架名字Pythia,也就是希腊神话中的皮提亚,德尔菲阿波罗神庙中的女祭司。女祭司的一项重要工作嘛,就是回答问题。

如果你也想搭一个会看图回答问题的模型,收好这份paper:

Pythia v0.1: the Winning Entry to the VQA Challenge 2018 *Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus Rohrbach, Dhruv Batra, Devi Parikh https://arxiv.org/pdf/1807.09956.pdf

以及开源代码:

https://github.com/facebookresearch/pythia

为它打下基础的Bottom-Up and Top-Down Attention:

https://github.com/hengyuan-hu/bottom-up-attention-vqa

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-07-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 夏乙 发自 凹非寺 量子位 报道 | 公众号 QbitAI
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档