用Python更加了解微信好友

用了微信几年了,微信号有也不少了,但是真正了解自己的好友吗?好友最多的城市是哪个?好友男女比例是多少?好友签名都是什么?今天我们来充分了解自己的微信好友。

运行平台: Windows Python版本: Python3.6 IDE: Sublime Text

1、准备工作

1.1 库介绍

只有登录微信才能获取到微信好友的信息,本文采用wxpy该第三方库进行微信的登录以及信息的获取。

wxpyitchat 的基础上,通过大量接口优化提升了模块的易用性,并进行丰富的功能扩展。

wxpy一些常见的场景:

  • 控制路由器、智能家居等具有开放接口的玩意儿
  • 运行脚本时自动把日志发送到你的微信
  • 加群主为好友,自动拉进群中
  • 跨号或跨群转发消息
  • 自动陪人聊天
  • 逗人玩

总而言之,可用来实现各种微信个人号的自动化操作。

1.2 wxpy库安装

wxpy 支持 Python 3.4-3.6,以及 2.7 版本

将下方命令中的 “pip” 替换为 “pip3” 或 “pip2”,可确保安装到对应的 Python 版本中

  1. 从 PYPI 官方源下载安装 (在国内可能比较慢或不稳定):
pip install -U wxpy
  1. 从豆瓣 PYPI 镜像源下载安装 (推荐国内用户选用):
pip install -U wxpy -i "https://pypi.doubanio.com/simple/"

1.3 登录微信

wxpy中有一个机器人对象,机器人 Bot 对象可被理解为一个 Web 微信客户端。Bot 在初始化时便会执行登陆操作,需要手机扫描登陆。

通过机器人对象 Botchats(), friends()groups(), mps() 方法, 可分别获取到当前机器人的 所有聊天对象好友群聊,以及公众号列表

本文主要通过friends()获取到所有好友信息,然后进行数据的处理。

from wxpy import *

# 初始化机器人,扫码登陆
bot = Bot()

# 获取所有好友
my_friends = bot.friends()
print(type(my_friends))

以下为输出消息:

Getting uuid of QR code.
Downloading QR code.
Please scan the QR code to log in.
Please press confirm on your phone.
Loading the contact, this may take a little while.
<Login successfully as 王强?>
<class 'wxpy.api.chats.chats.Chats'>

wxpy.api.chats.chats.Chats对象是多个聊天对象的合集,可用于搜索或统计,可以搜索和统计的信息包括sex(性别)、province(省份)、city(城市)和signature(个性签名)等。

2、微信好友男女比例

2.1 数据统计

使用一个字典sex_dict来统计好友中男性和女性的数量。

# 使用一个字典统计好友男性和女性的数量
sex_dict = {'male': 0, 'female': 0}

for friend in my_friends:
    # 统计性别
    if friend.sex == 1:
        sex_dict['male'] += 1
    elif friend.sex == 2:
        sex_dict['female'] += 1

print(sex_dict)

以下为输出结果:

{'male': 255, 'female': 104}

2.2 数据呈现

本文采用 ECharts饼图 进行数据的呈现,打开链接http://echarts.baidu.com/echarts2/doc/example/pie1.html,可以看到如下内容:

1、echarts饼图原始内容

从图中可以看到左侧为数据,右侧为呈现的数据图,其他的形式的图也是这种左右结构。看一下左边的数据:

option = {
    title : {
        text: '某站点用户访问来源',
        subtext: '纯属虚构',
        x:'center'
    },
    tooltip : {
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c} ({d}%)"
    },
    legend: {
        orient : 'vertical',
        x : 'left',
        data:['直接访问','邮件营销','联盟广告','视频广告','搜索引擎']
    },
    toolbox: {
        show : true,
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            magicType : {
                show: true, 
                type: ['pie', 'funnel'],
                option: {
                    funnel: {
                        x: '25%',
                        width: '50%',
                        funnelAlign: 'left',
                        max: 1548
                    }
                }
            },
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    calculable : true,
    series : [
        {
            name:'访问来源',
            type:'pie',
            radius : '55%',
            center: ['50%', '60%'],
            data:[
                {value:335, name:'直接访问'},
                {value:310, name:'邮件营销'},
                {value:234, name:'联盟广告'},
                {value:135, name:'视频广告'},
                {value:1548, name:'搜索引擎'}
            ]
        }
    ]
};        

可以看到option =后面的大括号里是JSON格式的数据,接下来分析一下各项数据:

  • title:标题
  • text:标题内容
  • subtext:子标题
  • x:标题位置
  • tooltip:提示,将鼠标放到饼状图上就可以看到提示
  • legend:图例
  • orient:方向
  • x:图例位置
  • data:图例内容
  • toolbox:工具箱,在饼状图右上方横向排列的图标
  • mark:辅助线开关
  • dataView:数据视图,点击可以查看饼状图数据
  • magicType:饼图(pie)切换和漏斗图(funnel)切换
  • restore:还原
  • saveAsImage:保存为图片
  • calculable:暂时不知道它有什么用
  • series:主要数据
  • data:呈现的数据

其它类型的图数据格式类似,后面不再详细分析。只需要修改data、legend->dataseries->data即可,修改后的数据为:

option = {
    title : {
        text: '微信好友性别比例',
        subtext: '真实数据',
        x:'center'
    },
    tooltip : {
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c} ({d}%)"
    },
    legend: {
        orient : 'vertical',
        x : 'left',
        data:['男性','女性']
    },
    toolbox: {
        show : true,
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            magicType : {
                show: true, 
                type: ['pie', 'funnel'],
                option: {
                    funnel: {
                        x: '25%',
                        width: '50%',
                        funnelAlign: 'left',
                        max: 1548
                    }
                }
            },
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    calculable : true,
    series : [
        {
            name:'访问来源',
            type:'pie',
            radius : '55%',
            center: ['50%', '60%'],
            data:[
                {value:255, name:'男性'},
                {value:104, name:'女性'}
            ]
        }
    ]
};        

数据修改完成后,点击页面中绿色的刷新按钮,可以得到饼图如下(可以根据自己的喜好修改主题):

2、好友性别比例

将鼠标放到饼图上可以看到详细数据:

3、好友性别比例查看数据

3、微信好友全国分布图

3.1 数据统计

# 使用一个字典统计各省好友数量
province_dict = {'北京': 0, '上海': 0, '天津': 0, '重庆': 0,
    '河北': 0, '山西': 0, '吉林': 0, '辽宁': 0, '黑龙江': 0,
    '陕西': 0, '甘肃': 0, '青海': 0, '山东': 0, '福建': 0,
    '浙江': 0, '台湾': 0, '河南': 0, '湖北': 0, '湖南': 0,
    '江西': 0, '江苏': 0, '安徽': 0, '广东': 0, '海南': 0,
    '四川': 0, '贵州': 0, '云南': 0,
    '内蒙古': 0, '新疆': 0, '宁夏': 0, '广西': 0, '西藏': 0,
    '香港': 0, '澳门': 0}

# 统计省份
for friend in my_friends:
    if friend.province in province_dict.keys():
        province_dict[friend.province] += 1

# 为了方便数据的呈现,生成JSON Array格式数据
data = []
for key, value in province_dict.items():
    data.append({'name': key, 'value': value})

print(data)

以下为输出结果:

[{'name': '北京', 'value': 91}, {'name': '上海', 'value': 12}, {'name': '天津', 'value': 15}, {'name': '重庆', 'value': 1}, {'name': '河北', 'value': 53}, {'name': '山西', 'value': 2}, {'name': '吉林', 'value': 1}, {'name': '辽宁', 'value': 1}, {'name': '黑龙江', 'value': 2}, {'name': '陕西', 'value': 3}, {'name': '甘肃', 'value': 0}, {'name': '青海', 'value': 0}, {'name': '山东', 'value': 7}, {'name': '福建', 'value': 3}, {'name': '浙江', 'value': 4}, {'name': '台湾', 'value': 0}, {'name': '河南', 'value': 1}, {'name': '湖北', 'value': 4}, {'name': '湖南', 'value': 4}, {'name': '江西', 'value': 4}, {'name': '江苏', 'value': 9}, {'name': '安徽', 'value': 2}, {'name': '广东', 'value': 63}, {'name': '海南', 'value': 0}, {'name': '四川', 'value': 2}, {'name': '贵州', 'value': 0}, {'name': '云南', 'value': 1}, {'name': '内蒙古', 'value': 0}, {'name': '新疆', 'value': 2}, {'name': '宁夏', 'value': 0}, {'name': '广西', 'value': 1}, {'name': '西藏', 'value': 0}, {'name': '香港', 'value': 0}, {'name': '澳门', 'value': 0}]

可以看出,好友最多的省份为北京。那么问题来了:为什么要把数据重组成这种格式?因为ECharts的地图需要这种格式的数据。

3.2 数据呈现

采用ECharts地图 来进行好友分布的数据呈现。打开该网址,将左侧数据修改为:

option = {
    title : {
        text: '微信好友全国分布图',
        subtext: '真实数据',
        x:'center'
    },
    tooltip : {
        trigger: 'item'
    },
    legend: {
        orient: 'vertical',
        x:'left',
        data:['好友数量']
    },
    dataRange: {
        min: 0,
        max: 100,
        x: 'left',
        y: 'bottom',
        text:['高','低'],           // 文本,默认为数值文本
        calculable : true
    },
    toolbox: {
        show: true,
        orient : 'vertical',
        x: 'right',
        y: 'center',
        feature : {
            mark : {show: true},
            dataView : {show: true, readOnly: false},
            restore : {show: true},
            saveAsImage : {show: true}
        }
    },
    roamController: {
        show: true,
        x: 'right',
        mapTypeControl: {
            'china': true
        }
    },
    series : [
        {
            name: '好友数量',
            type: 'map',
            mapType: 'china',
            roam: false,
            itemStyle:{
                normal:{label:{show:true}},
                emphasis:{label:{show:true}}
            },
            data:[
              {'name': '北京', 'value': 91},
              {'name': '上海', 'value': 12},
              {'name': '天津', 'value': 15}, 
              {'name': '重庆', 'value': 1}, 
              {'name': '河北', 'value': 53},
              {'name': '山西', 'value': 2}, 
              {'name': '吉林', 'value': 1},
              {'name': '辽宁', 'value': 1}, 
              {'name': '黑龙江', 'value': 2},
              {'name': '陕西', 'value': 3},
              {'name': '甘肃', 'value': 0},
              {'name': '青海', 'value': 0}, 
              {'name': '山东', 'value': 7},
              {'name': '福建', 'value': 3}, 
              {'name': '浙江', 'value': 4},
              {'name': '台湾', 'value': 0},
              {'name': '河南', 'value': 1},
              {'name': '湖北', 'value': 4}, 
              {'name': '湖南', 'value': 4},
              {'name': '江西', 'value': 4},
              {'name': '江苏', 'value': 9},
              {'name': '安徽', 'value': 2},
              {'name': '广东', 'value': 63}, 
              {'name': '海南', 'value': 0},
              {'name': '四川', 'value': 2},
              {'name': '贵州', 'value': 0}, 
              {'name': '云南', 'value': 1},
              {'name': '内蒙古', 'value': 0},
              {'name': '新疆', 'value': 2}, 
              {'name': '宁夏', 'value': 0},
              {'name': '广西', 'value': 1},
              {'name': '西藏', 'value': 0},
              {'name': '香港', 'value': 0},
              {'name': '澳门', 'value': 0}
            ]
        }
    ]
};                    

注意两点:

  • dataRange->max 根据统计数据适当调整
  • series->data 的数据格式

点击刷新按钮后,可以生成如下地图:

4、好友全国分布图

从图中可以看出我的好友主要分布在北京河北广东

有趣的是,地图左边有一个滑块,代表地图数据的范围,我们将上边的滑块拉到最下面可以看到没有微信好友分布的省份:

5、没有微信好友的省份

按照这个思路,我们可以在地图上看到确切数量好友分布的省份,读者可以动手试试。

4、好友签名统计

4.1 数据统计

def write_txt_file(path, txt):
    '''
    写入txt文本
    '''
    with open(path, 'a', encoding='gb18030', newline='') as f:
        f.write(txt)    

# 统计签名
for friend in my_friends:
    # 对数据进行清洗,将标点符号等对词频统计造成影响的因素剔除
    pattern = re.compile(r'[一-龥]+')
    filterdata = re.findall(pattern, friend.signature)
    write_txt_file('signatures.txt', ''.join(filterdata))

上面代码实现了对好友签名进行清洗以及保存的功能,执行完成之后会在当前目录生成signatures.txt文件。

4.2 数据呈现

数据呈现采用词频统计和词云展示,通过词频可以了解到微信好友的生活态度。

词频统计用到了 jieba、numpy、pandas、scipy、wordcloud库。如果电脑上没有这几个库,执行安装指令:

  • pip install jieba
  • pip install pandas
  • pip install numpy
  • pip install scipy
  • pip install wordcloud

4.2.1 读取txt文件

前面已经将好友签名保存到txt文件里了,现在我们将其读出:

def read_txt_file(path):
    '''
    读取txt文本
    '''
    with open(path, 'r', encoding='gb18030', newline='') as f:
        return f.read()

4.2.2 stop word

下面引入一个概念:stop word, 在网站里面存在大量的常用词比如:“在”、“里面”、“也”、“的”、“它”、“为”这些词都是停止词。这些词因为使用频率过高,几乎每个网页上都存在,所以搜索引擎开发人员都将这一类词语全部忽略掉。如果我们的网站上存在大量这样的词语,那么相当于浪费了很多资源。

在百度搜索stpowords.txt进行下载,放到py文件同级目录。

content = read_txt_file(txt_filename)
segment = jieba.lcut(content)
words_df=pd.DataFrame({'segment':segment})

stopwords=pd.read_csv("stopwords.txt",index_col=False,quoting=3,sep=" ",names=['stopword'],encoding='utf-8')
words_df=words_df[~words_df.segment.isin(stopwords.stopword)]

4.2.3 词频统计

重头戏来了,词频统计使用numpy

import numpy

words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数":numpy.size})
    words_stat = words_stat.reset_index().sort_values(by=["计数"],ascending=False)

4.2.4 词频可视化:词云

词频统计虽然出来了,可以看出排名,但是不完美,接下来我们将它可视化。使用到wordcloud库,详细介绍见 github 。

from scipy.misc import imread
from wordcloud import WordCloud, ImageColorGenerator


# 设置词云属性
color_mask = imread('background.jfif')
wordcloud = WordCloud(font_path="simhei.ttf",   # 设置字体可以显示中文
                background_color="white",       # 背景颜色
                max_words=100,                  # 词云显示的最大词数
                mask=color_mask,                # 设置背景图片
                max_font_size=100,              # 字体最大值
                random_state=42,
                width=1000, height=860, margin=2,# 设置图片默认的大小,但是如果使用背景图片的话,                                                   # 那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
                )

# 生成词云, 可以用generate输入全部文本,也可以我们计算好词频后使用generate_from_frequencies函数
word_frequence = {x[0]:x[1]for x in words_stat.head(100).values}
print(word_frequence)
word_frequence_dict = {}
for key in word_frequence:
    word_frequence_dict[key] = word_frequence[key]

wordcloud.generate_from_frequencies(word_frequence_dict)
# 从背景图片生成颜色值  
image_colors = ImageColorGenerator(color_mask) 
# 重新上色
wordcloud.recolor(color_func=image_colors)
# 保存图片
wordcloud.to_file('output.png')
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

运行效果图如下(左图为背景图,右图为生成词云图片):

6、背景图和词云图对比

从词云图可以分析好友特点:

  • 做--------------------行动派
  • 人生、生活--------热爱生活
  • 快乐-----------------乐观
  • 选择-----------------决断
  • 专业-----------------专业
  • 爱--------------------爱

5、总结

至此,微信好友的分析工作已经完成,wxpy的功能还有很多,比如聊天、查看公众号信息等,有意的读者请自行查阅官方文档。

6、完整代码

上面的代码比较松散,下面展示的完整代码我将各功能模块封装成函数:

#-*- coding: utf-8 -*-
import re
from wxpy import *
import jieba
import numpy
import pandas as pd
import matplotlib.pyplot as plt
from scipy.misc import imread
from wordcloud import WordCloud, ImageColorGenerator

def write_txt_file(path, txt):
    '''
    写入txt文本
    '''
    with open(path, 'a', encoding='gb18030', newline='') as f:
        f.write(txt)

def read_txt_file(path):
    '''
    读取txt文本
    '''
    with open(path, 'r', encoding='gb18030', newline='') as f:
        return f.read()

def login():
    # 初始化机器人,扫码登陆
    bot = Bot()

    # 获取所有好友
    my_friends = bot.friends()

    print(type(my_friends))
    return my_friends

def show_sex_ratio(friends):
    # 使用一个字典统计好友男性和女性的数量
    sex_dict = {'male': 0, 'female': 0}

    for friend in friends:
        # 统计性别
        if friend.sex == 1:
            sex_dict['male'] += 1
        elif friend.sex == 2:
            sex_dict['female'] += 1

    print(sex_dict)

def show_area_distribution(friends):
    # 使用一个字典统计各省好友数量
    province_dict = {'北京': 0, '上海': 0, '天津': 0, '重庆': 0,
        '河北': 0, '山西': 0, '吉林': 0, '辽宁': 0, '黑龙江': 0,
        '陕西': 0, '甘肃': 0, '青海': 0, '山东': 0, '福建': 0,
        '浙江': 0, '台湾': 0, '河南': 0, '湖北': 0, '湖南': 0,
        '江西': 0, '江苏': 0, '安徽': 0, '广东': 0, '海南': 0,
        '四川': 0, '贵州': 0, '云南': 0,
        '内蒙古': 0, '新疆': 0, '宁夏': 0, '广西': 0, '西藏': 0,
        '香港': 0, '澳门': 0}

    # 统计省份
    for friend in friends:
        if friend.province in province_dict.keys():
            province_dict[friend.province] += 1

    # 为了方便数据的呈现,生成JSON Array格式数据
    data = []
    for key, value in province_dict.items():
        data.append({'name': key, 'value': value})

    print(data)

def show_signature(friends):
    # 统计签名
    for friend in friends:
        # 对数据进行清洗,将标点符号等对词频统计造成影响的因素剔除
        pattern = re.compile(r'[一-龥]+')
        filterdata = re.findall(pattern, friend.signature)
        write_txt_file('signatures.txt', ''.join(filterdata))

    # 读取文件
    content = read_txt_file('signatures.txt')
    segment = jieba.lcut(content)
    words_df = pd.DataFrame({'segment':segment})

    # 读取stopwords
    stopwords = pd.read_csv("stopwords.txt",index_col=False,quoting=3,sep=" ",names=['stopword'],encoding='utf-8')
    words_df = words_df[~words_df.segment.isin(stopwords.stopword)]
    print(words_df)

    words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数":numpy.size})
    words_stat = words_stat.reset_index().sort_values(by=["计数"],ascending=False)

    # 设置词云属性
    color_mask = imread('background.jfif')
    wordcloud = WordCloud(font_path="simhei.ttf",   # 设置字体可以显示中文
                    background_color="white",       # 背景颜色
                    max_words=100,                  # 词云显示的最大词数
                    mask=color_mask,                # 设置背景图片
                    max_font_size=100,              # 字体最大值
                    random_state=42,
                    width=1000, height=860, margin=2,# 设置图片默认的大小,但是如果使用背景图片的话,                                                   # 那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
                    )

    # 生成词云, 可以用generate输入全部文本,也可以我们计算好词频后使用generate_from_frequencies函数
    word_frequence = {x[0]:x[1]for x in words_stat.head(100).values}
    print(word_frequence)
    word_frequence_dict = {}
    for key in word_frequence:
        word_frequence_dict[key] = word_frequence[key]

    wordcloud.generate_from_frequencies(word_frequence_dict)
    # 从背景图片生成颜色值  
    image_colors = ImageColorGenerator(color_mask) 
    # 重新上色
    wordcloud.recolor(color_func=image_colors)
    # 保存图片
    wordcloud.to_file('output.png')
    plt.imshow(wordcloud)
    plt.axis("off")
    plt.show()

def main():
    friends = login()
    show_sex_ratio(friends)
    show_area_distribution(friends)
    show_signature(friends)

if __name__ == '__main__':
    main()

原文发布于微信公众号 - C与Python实战(CPythonPractice)

原文发表时间:2018-03-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏V站

图片API丨网站如何接入Bing每天一更背景?

Bing,即必应。常常有些站都是千篇一律的底色背景,毫无新意,导致的即是访客一个一个访你友链都不访那些死鬼站长!这就是Bing每天一更背景,也十分的骚,需要的上...

29170
来自专栏智能大石头

MF前传——探索者一号简介

    MF让我们这些C#程序员能够把手伸到嵌入式行业,大大增强我们在各种项目中的竞争能力。无奈国内研究MF的人少之又少,为了加速MF技术的研究,我们团队采用少...

22090
来自专栏coding

AOC显示器提示OSD锁定怎么办?

macpro虽好,但屏幕实在太小了,而且原生的键盘敲起来很费劲,还是用机械键盘噼里啪啦敲打显得爽快。于是,给macpro外接了键鼠以及27寸的AOC显示器。

2.4K40
来自专栏飞总聊IT

大数据那些事(11):复活的LSM-Tree--BigTable的系统实现

BigTable是一个非常复杂的系统,发表的论文写得并不是很清楚。所幸Google开源了LevelDB这个Key-Value Store。这个项目的作者是Jef...

43950
来自专栏信安之路

CTF初识与深入

这段时间一直在忙活CTF相关的东西,从参赛者到出题人,刷过一些题,也初步了解了出题人的逻辑;这篇文章就简单地讲一下CTF如何入门以及如何深入的学习、利用CTF这...

20800
来自专栏程序员的酒和故事

跟Google学写代码--Chromium/base--cpu源码学习及应用

Chromium是一个伟大的、庞大的开源工程,很多值得我们学习的地方。 前面写道: 《跟Google学写代码–Chromium/base–stl_util源...

39270
来自专栏机器人网

工业机器人伺服结构和原理

伺服的结构是怎样的?一个最简易的伺服控制单元,就是一个伺服电机加伺服控制器,今天就来解析下伺服电机与伺服控制器。 电机动作的原理 右手螺旋法则(安培定则)——通...

34750
来自专栏企鹅号快讯

宇宙神器:微信“活字转换”

一直想将笔耕时代发表的作品,输入电脑存word文档,以便修改和使用。由于作品较多且忙于写作加上惰性,使用电脑20年,始终未能如愿。平时看到心仪的好文字,短些的记...

39990
来自专栏CDA数据分析师

如果用R语言读《笑傲江湖》……

上周末,闲着没事就试了一个新的R中文文本分词包——jiebaR,支持Windows,支持简体及繁体中文,速度也很快,大家可以根据该包文档去学习,很容易上手!下面...

26860
来自专栏算法+

MP3 编码解码 附完整c代码

图像方面,已经有stb_image,spot,freeimage等编解码库系列,做得特别赞。

15740

扫码关注云+社区

领取腾讯云代金券