大数据商业智能的十大戒律

原文:The 10 Commandments of Business Intelligence in BigData

来源:datanami

作者:Shant Hovsepian

转自:品觉(ID:pinjue_ali)

品觉导读:

  1. 不要将数据提取出来,做成数据集市和数据立方,因为“提取”就意味着转移。
  2. 记住了,安全即服务。
  3. 扁平化会毁掉原始结构中所表达的重要关系。
  4. 用户希望和可视元素进行交互,得到他们正在寻找的答案,而不是对你已经提供给他们的结果进行交叉过滤。
  5. 创造数据的人很多,但利用数据的人却很少。

原文翻译:

如今,各路企业和组织都不再使用上一代架构来存储大数据。既然如此,为什么还要使用上一代商业智能(BI)工具来进行大数据分析呢?在为企业选择BI工具时,应该遵守以下“十诫”。

第一诫:不要转移大数据

转移大数据代价高昂:毕竟,大数据很“大”,如果打包转移,负担太重。不要将数据提取出来,做成数据集市和数据立方,因为“提取”就意味着转移,会在维护、网络性能附加处理器方面造成纷乱庞杂的问题,出现两个逻辑上相同的备份。让BI深入更底层运行数据就是大数据萌发的最初动力。

第二诫:不要偷盗!或者说不要违反企业安全政策

安全并非可有可无。不幸的是,数据泄露事件频繁发生,这表明实现安全并非易事。要选择能够利用现有安全模型的BI工具。依靠Ranger、Sentry、Knox等综合性安全系统,大数据可以使实现数据安全变得更加容易,现在就连Mongo数据库都有了令人惊叹的安全架构。所有那些模型都允许你插入权限、将用户信息一路传播到应用层、实施可视化的授权和提供与该授权相关的数据志。记住了,安全即服务。

第三诫:不要按照用户数和数据量付费

大数据的一个主要好处在于,如果做好了,它就能实现极高的性价比。把5PB数据存储到Oracle可能会让你倾家荡产,但存储到大数据系统则不会。尽管如此,在付钱购买之前,应该警惕某些价格陷阱。有些BI应用按照数据量或者索引数据量向用户收费。千万当心!数据量和大数据使用量出现指数式增长是再平常不过的事情,我们的客户曾目睹其访问量在短短几个月时间里从数百亿次猛增到数千亿次,用户数扩大50倍。这是大数据系统的另一个好处:渐进式可扩展性。不要被低价所迷惑,去购买一种会对企业增长征收“高税”的BI工具。

第四诫:要贪大胆借鉴别人的可视图

分享静态图表?这些我们已经做过了,无论是PDF文档、PNG图片还是电邮附件里,到处都在传播静态图表。但对于大数据和BI,静态图表还远远不够:你拥有的一切无非都是些漂亮的图片罢了。你应该让任何人都能够随心所欲地与你的数据进行交互。应该把可视化看作是驾驭数据的交互式路线图。为什么要闭门造车呢?将交互式可视化手段公之于众只是第一步。看看Github的模式就知道。与其说“这是我的最终发布产品”,不如说“这是一幅可视图,复制下来,分解它,我就是从中得到那些见解,看看它还能用于其他哪些领域”。这会其他人从你的见解中学到有用的东西。

第五诫:要分析天然形态的数据

大数据是“非结构化”的,这样的说法我们已经听过太多太多。其实不然。财务和传感器会产生大量的键值对。JSON(可能是当下最流行的数据格式)可以是半结构化、多结构化等等,Mongo数据库对这种数据格式下了重注。JSON具有好处理和可规模化的优点,但如果把它转换成表格,表达力就会丢失。很多大数据仍然被制成表格,通常拥有数千栏。你不得不为所有的值寻找关系:“在那种情况下……从这里选择这个”。扁平化会毁掉原始结构中所表达的重要关系。远离那些对你说“请把数据转换成表格,因为我们一直都这么干”的BI解决方案。

第六诫:不要无限期地等待结果

在2016年,我们预计数据处理速度将会变得快起来。一个典型方法是联机分析处理(OLAP)立方,本质上就是把数据转移到预计算缓存,从而加快处理速度。问题在于,你必须提取和转移数据(请看第一诫),以便建造数据立方,然后才能加快速度。现在,这种方法能够在一定的数据规模下良好运转,但如果临时表格过于庞大,你的笔记本电脑在试图将表格本地化的时候就会崩溃。当你提取新数据重建缓存时,新数据的分析就会中途停下来。此外还要注意样本问题,你可能会得到一个看起来不错、效果很好的可视图,但最后却发现全不对路,而问题就出在缺少大局观。要选择那些能便捷地不断调整数据的BI工具。

第七诫:不要制作报告,而要打造应用

在很长一段时间里,“获得数据”意味着获得报告。在大数据时代,BI用户希望从多个来源获得异步数据,这样他们就不需要刷新任何东西,就好像浏览器和移动设备上运行的其他各种东西。用户希望和可视元素进行交互,得到他们正在寻找的答案,而不是对你已经提供给他们的结果进行交叉过滤。Rails等框架使打造Web应用变得更加简单。为什么不对BI应用做同样的事情呢?没理由不对这些应用、应用程序接口(API)、模板、可重用性等等采取类似的做法。现在是时候通过现代Web应用开发的透镜来看待BI。

第八诫:要利用智能工具

在提供基于数据的可视图方面,BI工具已经证明了自己的能力。现在则轮到在模型和缓存的自动维护上下功夫,这样一来,终端用户就不必操这个心了。在庞大的数据规模下,自动维护几乎是不可或缺的,我们可以从用户和数据与可视图的交互中获得大量信息,现代工具应该使用这些信息来对数据网络效应加以利用。另外,要选择那些内置全面搜索能力的工具,因为我曾见过有些客户拥有成千上万的可视图。你需要一种迅速查找的方法,在网络的长年熏陶之下,我们已经习惯了搜索,而不是翻找菜单。

第九诫:要超越基本范畴

如今的大数据系统因为预测分析能力而著称。相关性、预测和其他功能使企业用户比以往任何时候都能更便捷地进行高级分析。不需要编程经验就能处理大数据的可视化技术让分析师如有神助,超越了基本分析的范畴。为了实现其真正的潜力,大数据不应该依赖于每个人都变成R预言程序员。人类非常善于处理可视化信息,我们必须更加努力地将可视化信息呈现在人们眼前。

第十诫:不要只是站在数据湖边,等着数据科学家来干活儿

不管你是把大数据当成数据湖还是企业数据中心,Hadoop已经改变了数据的处理速度和存储成本,我们每天都在创造更多的数据。但在真正利用大数据为企业用户服务方面,常常存在一种“只写系统”——创造数据的人很多,但利用数据的人却很少。

其实,用Hadoop里的数据可以为企业用户解答数不清的问题。BI讲究的是打造数据可视化应用,为日常决策提供支持。企业里的每个人都希望做出数据驱动的决策。把大数据能够解答的所有问题局限于需要数据科学家来处理的问题,这是奇耻大辱。

车品觉简介

畅销书《决战大数据》作者, 阿里巴巴集团副总裁,首任阿里数据委员会会长;现担任中国信息协会大数据分会副会长、中国计算机学会大数据专家委员会副主任、国家信标委大数据标准工作组副组长、粤港信息化专家委员、中国计算数学学会第九届理事、清华大学教育指导委员(大数据项目)、浙江大学管理学院兼职教授等职。

END

版权声明: 转载文章均来自公开网络,仅供学习使用,不会用于任何商业用途,如果出处有误或侵犯到原作者权益,请与我们联系删除或授权事宜,联系邮箱:holly0801@163.com。转载大数据公众号文章请注明原文链接和作者,否则产生的任何版权纠纷与大数据无关。

原文发布于微信公众号 - 大数据(hzdashuju)

原文发表时间:2016-08-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏java一日一条

优秀的前端开发工程师简历是怎么样的?

在阿里常年招聘,筛过各式各样的简历,每到招聘季,筛简历、面试过程非常耗精力,当然,原因之一是我想招非常优秀的人,宁可多花些时间,另一方面,除了那些不合格的简历之...

801
来自专栏带你撸出一手好代码

编程语言之间的差别真有那么大吗?

软件开发是一种特殊的职业,特殊到有点匪夷所思,行业从业人员的工种分类非常的不稳定, 比如说古时候有C工程师、C++工程师、VB工程师,后来有了Java工程师、....

46810
来自专栏华章科技

编程能力的四种境界

网址:http://www.vaikan.com/the-four-stages-of-programming-competence/

921
来自专栏大数据文摘

【干货】吴甘沙清华讲:大数据的10个技术前沿(上)

1805
来自专栏Java架构师进阶

高级程序员,你需要养成这7个习惯

直到有一天我阅读了《程序员修炼之道:从小工到专家》,里边的这几条至今受用,以下是我的分享,供也在迷茫期的你参考。如果受用,请把他们记在心里,贴在桌子上。

972
来自专栏机器之心

资源 | 关于大数据,你应该知道的75个专业术语

选自DataConomy 机器之心编译 近日,Ramesh Dontha 在 DataConomy 上连发两篇文章,扼要而全面地介绍了关于大数据的 75 个核心...

3876
来自专栏AI研习社

「全球最大同性交友平台」Github 十岁了,十年大事记一览

AI 研习社按,如果你是程序员,那对 GitHub 一定不会陌生。作为「全球最大同性交友平台」,截至目前,GitHub 已经拥有超过 2700 万开发者。

933
来自专栏数据小魔方

数据可视化经典案例|让数据说话

今天跟大家分享一个经典的数据可视化案例! 案例的主角是汉斯.罗斯林(Hans Rosling)教授。 它是卡罗琳学院的国际卫生学教授,并担任Gapminder基...

4196
来自专栏达观数据

达观数据阐述推荐系统和搜索引擎的关系

从信息获取的角度来看,搜索和推荐是用户获取信息的两种主要手段。无论在互联网上,还是在线下的场景里,搜索和推荐这两种方式都大量并存,那么推荐系统和搜索引擎这两个系...

40011
来自专栏哲学驱动设计

技术讨论总结:客户化、缓存

    最近,GIX4项目需要开展客户化工作。同时,下一期sprint中,客户还要求大幅度提升产品的性能。针对所存在的问题,开发人员决定开一系列的技术讨论会。 ...

1917

扫码关注云+社区

领取腾讯云代金券