Spark与HBase的整合

前言

之前因为仅仅是把HBase当成一个可横向扩展并且具有持久化能力的KV数据库,所以只用在了指标存储上,参看很早之前的一篇文章基于HBase做Storm 实时计算指标存储。这次将HBase用在了用户行为存储上,因为Rowkey的过滤功能也很不错,可以很方便的把按人或者内容的维度过滤出所有的行为。从某种意义上,HBase的是一个有且仅有一个多字段复合索引的存储引擎。

虽然我比较推崇实时计算,不过补数据或者计算历史数据啥的,批处理还是少不了的。对于历史数据的计算,其实我是有两个选择的,一个是基于HBase的已经存储好的行为数据进行计算,或者基于Hive的原始数据进行计算,最终选择了前者,这就涉及到Spark(StreamingPro) 对HBase的批处理操作了。

整合过程

和Spark 整合,意味着最好能有Schema(Mapping),因为Dataframe 以及SQL API 都要求你有Schema。 遗憾的是HBase 有没有Schema取决于使用者和场景。通常SparkOnHBase的库都要求你定义一个Mapping(Schema),比如hortonworks的 SHC(https://github.com/hortonworks-spark/shc) 就要求你定义一个如下的配置:

{
"rowkey":"key",
"table":{"namespace":"default", "name":"pi_user_log", "tableCoder":"PrimitiveType"},
"columns":{"col0":{"cf":"rowkey", "col":"key", "type":"string"},
"col1":{"cf":"f","col":"col1", "type":"string"}
}
}

看上面的定义已经还是很容易看出来的。对HBase的一个列族和列取一个名字,这样就可以在Spark的DataSource API使用了,关于如何开发Spark DataSource API可以参考我的这篇文章利用 Spark DataSource API 实现Rest数据源中使用,SHC大体实现的就是这个API。现在你可以这么用了:

 val cat = "{\n\"rowkey\":\"key\",\"table\":{\"namespace\":\"default\", \"name\":\"pi_user_log\", \"tableCoder\":\"PrimitiveType\"},\n\"columns\":{\"col0\":{\"cf\":\"rowkey\", \"col\":\"key\", \"type\":\"string\"},\n\"28360592\":{\"cf\":\"f\",\"col\":\"28360592\", \"type\":\"string\"}\n}\n}"
    val cc = sqlContext
      .read
      .options(Map(HBaseTableCatalog.tableCatalog -> cat))
      .format("org.apache.spark.sql.execution.datasources.hbase")
      .load()

不过当你有成千上万个列,那么这个就无解了,你不大可能一一定义,而且很多时候使用者也不知道会有哪些列,列名甚至可能是一个时间戳。我们现在好几种情况都遇到了,所以都需要解决:

  1. 自动获取HBase里所有的列形成Schema,这样就不需要用户配置了。
  2. 规定HBase只有两个列,一个rowkey,一个 content,content 是一个map,包含所有以列族+列名为key,对应内容为value。

先说说第二种方案(因为其实第一种方案也要依赖于第二种方案):

{
        "name": "batch.sources",
        "params": [
          {
            "inputTableName": "log1",
            "format": "org.apache.spark.sql.execution.datasources.hbase.raw",
            "path": "-",
            "outputTable": "log1"
          }
        ]
      },
      {
        "name": "batch.sql",
        "params": [
          {
            "sql": "select rowkey,json_value_collect(content) as actionList from log1",
            "outputTableName":"finalTable"
          }
        ]
      },

首先我们配置了一个HBase的表,叫log1,当然,这里是因为程序通过hbase-site.xml获得HBase的链接,所以配置上你看不到HBase相关的信息。接着呢,在SQL 里你就可以对content 做处理了。我这里是把content 转化成了JSON格式字符串。再之后你就可以自己写一个UDF函数之类的做处理了,从而实现你复杂的业务逻辑。我们其实每个字段里存储的都是JSON,所以我其实不关心列名,只要让我拿到所有的列就好。而上面的例子正好能够满足我这个需求了。

而且实现这个HBase DataSource 也很简单,核心逻辑大体如下:

case class HBaseRelation(
                          parameters: Map[String, String],
                          userSpecifiedschema: Option[StructType]
                        )(@transient val sqlContext: SQLContext)
  extends BaseRelation with TableScan with Logging {

  val hbaseConf = HBaseConfiguration.create()


  def buildScan(): RDD[Row] = {
    hbaseConf.set(TableInputFormat.INPUT_TABLE, parameters("inputTableName"))
    val hBaseRDD = sqlContext.sparkContext.newAPIHadoopRDD(hbaseConf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result])
      .map { line =>
        val rowKey = Bytes.toString(line._2.getRow)

        import net.liftweb.{json => SJSon}
        implicit val formats = SJSon.Serialization.formats(SJSon.NoTypeHints)

        val content = line._2.getMap.navigableKeySet().flatMap { f =>
          line._2.getFamilyMap(f).map { c =>
            (Bytes.toString(f) + ":" + Bytes.toString(c._1), Bytes.toString(c._2))
          }
        }.toMap

        val contentStr = SJSon.Serialization.write(content)

        Row.fromSeq(Seq(UTF8String.fromString(rowKey), UTF8String.fromString(contentStr)))
      }
    hBaseRDD
  }
}

那么我们回过头来,如何让Spark自动发现Schema呢?大体你还是需要过滤所有数据得到列的合集,然后形成Schema的,成本开销很大。我们也可以先将我们的数据转化为JSON格式,然后就可以利用Spark已经支持的JSON格式来自动推倒Schema的能力了。

总体而言,其实并不太鼓励大家使用Spark 对HBase进行批处理,因为这很容易让HBase过载,比如内存溢出导致RegionServer 挂掉,最遗憾的地方是一旦RegionServer 挂掉了,会有一段时间读写不可用,而HBase 又很容易作为实时在线程序的存储,所以影响很大。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏hotqin888的专栏

engineercms利用webuploader批量添加成果

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hotqin888/article/det...

1141
来自专栏分布式系统和大数据处理

使用Spark进行数据统计并将结果转存至MSSQL

在 使用Spark读取Hive中的数据 中,我们演示了如何使用python编写脚本,提交到spark,读取并输出了Hive中的数据。在实际应用中,在读取完数据后...

3452
来自专栏Java技术分享

百度开源的分布式 id 生成器

UidGenerator是Java实现的, 基于Snowflake算法的唯一ID生成器。UidGenerator以组件形式工作在应用项目中, 支持自定义work...

51710
来自专栏c#开发者

C#开发终端式短信的原理和方法

简介   没发过短信的年轻人肯定是属于那种受保护的稀有动物,通讯发达的今天短信已经成为人们交流的重要手段,其中也蕴含着巨大的市场和经济利益,掌握短信技术的人才也...

4499
来自专栏数据科学与人工智能

【数据科学】数据科学中的 Spark 入门

本文由 伯乐在线 - zhique 翻译,xxmen 校稿。未经许可,禁止转载! 英文出处:Ram Sriharsha。欢迎加入翻译组。 Apache Spar...

2216
来自专栏有趣的Python和你

Python数据分析之贴吧的问与答读取数据库获取question列分词词云

1293
来自专栏个人分享

Spark1.6 DataSets简介

    Apache Spark提供了强大的API,以便使开发者为使用复杂的分析成为了可能。通过引入SparkSQL,让开发者可以使用这些高级API接口来从事结...

1072
来自专栏Java架构师历程

solr

Solr它是一种开放源码的、基于 Lucene Java 的搜索服务器,易于加入到 Web 应用程序中。Solr 提供了层面搜索(就是统计)、命中醒目显示并且支...

4302
来自专栏Java3y

Hibernate【映射】知识要点

前言 前面的我们使用的是一个表的操作,但我们实际的开发中不可能只使用一个表的…因此,本博文主要讲解关联映射 集合映射 需求分析:当用户购买商品,用户可能有多个地...

3187
来自专栏Java后端技术栈

【面试题】2018年最全Java面试通关秘籍第三套!

注:本文是从众多面试者的面试经验中整理而来,其中不少是本人出的一些题目,网络资源众多,如有雷同,纯属巧合!禁止一切形式的碰瓷行为!未经允许禁止一切形式的转载和复...

1331

扫码关注云+社区

领取腾讯云代金券