numpy入门

基础

numpy中最主要的对象是同质数组array,也就是说数组中的元素类型都是一样的。数组的维度也称之为axis,axis的的个数称之为秩rank。

例如[1, 2, 3]的秩为1, 因为它没有轴,而下面的数组中,它的秩为2,第一维的长度为2, 第二维的长度为3:

[[ 1., 0., 0.],
 [ 0., 1., 2.]]

numpy的数组类为ndarray,别名为array,注意numpyarray与Python标准库array是不一样的。标准库的array只支持一维数组,提供的功能也少了很多。

ndarray其它比较重要的属性如下所示:

  • ndarray.ndim 数组维度的个数, 也就是数组的秩
  • ndarray.shape 数组的维度
  • ndarray.size 数组元素总的个数
  • ndarray.dtype 数组元素的类型
  • ndarray.itemsize 数组中每个元素的大小
  • ndarray.data 存储实际内容的缓冲,一般用不着。

示例

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type 'numpy.ndarray'>

创建数组

可以通过多种方式来创建数组。

例如可以通过Python列表或者元组来创建数组,结果数组的元素类型会自行推断。

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')

一个常见错误是使用多个数字参数而不是使用列表作为参数。

>>> a = np.array(1,2,3,4)    # WRONG
>>> a = np.array([1,2,3,4])  # RIGHT

array会将嵌套的序列转换为多维数组,例如:

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5,  2. ,  3. ],
       [ 4. ,  5. ,  6. ]])

数组的类型也可以显示声明:

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])

通常数组在初始情况下并不知道元素内容,但是知道数组大小,numpy提供了一些函数用于创建指定初始化内容的数组。

例如:

  • zeros创建一个全部为0的数组
  • ones创建一个全部为1的数组
  • empty创建一个内容随机的数组

默认情况下,这些函数创建的数组类型为float64

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])

为了创建一个序列数组,numpy提供了函数arange, 类似python的range函数。

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])

arange使用浮点数作为参数时,由于浮点数精度问题,通常不可能判断可以获取多少个元素。针对这种情况,numpy提供了linspace函数。

>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)

打印数组

当打印数组时,输出的格式与嵌套列表类似:

>>> a = np.arange(6)                         # 1d array
>>> print(a)
[0 1 2 3 4 5]
>>>
>>> b = np.arange(12).reshape(4,3)           # 2d array
>>> print(b)
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]
>>>
>>> c = np.arange(24).reshape(2,3,4)         # 3d array
>>> print(c)
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]

如果数组的元素个数太多,则自动省略中间部分,输出省略号:

>>> print(np.arange(10000))
[   0    1    2 ..., 9997 9998 9999]
>>>
>>> print(np.arange(10000).reshape(100,100))
[[   0    1    2 ...,   97   98   99]
 [ 100  101  102 ...,  197  198  199]
 [ 200  201  202 ...,  297  298  299]
 ...,
 [9700 9701 9702 ..., 9797 9798 9799]
 [9800 9801 9802 ..., 9897 9898 9899]
 [9900 9901 9902 ..., 9997 9998 9999]]

如果需要输出全部元素,可以这样设置;

>>> np.set_printoptions(threshold='nan')

基本操作

算术运算针对每个元素进行操作:

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)

跟其它矩阵语言不一样,numpy中矩阵的乘法不是通过*来实现的,而是使用dot函数或方法,*只是简单的两两相乘。

>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A*B                         # elementwise product
array([[2, 0],
       [0, 4]])
>>> A.dot(B)                    # matrix product
array([[5, 4],
       [3, 4]])
>>> np.dot(A, B)                # another matrix product
array([[5, 4],
       [3, 4]])

下列操作会直接会直接修改原始的数组:

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022  ,  3.72032449,  3.00011437],
       [ 3.30233257,  3.14675589,  3.09233859]])
>>> a += b                  # b is not automatically converted to integer type
Traceback (most recent call last):
  ...
TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'

当操作不同类型的数组时,结果数组的类型将向上转型,也就是转换为更为精确的数据类型:

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022  ,  3.72032449,  3.00011437],
       [ 3.30233257,  3.14675589,  3.09233859]])
>>> a += b                  # b is not automatically converted to integer type
Traceback (most recent call last):
  ...
TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'

numpy还提供了一些一元操作运算,例如计算数组中所有元素的和, 它们被实现为ndarray的方法:

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595

默认情况下,这些操作是针对所有的元素,而不考虑它们的维度,不过可以通过axis指定要操作的axis

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])

通用函数

numpy提供了一些通用函数,例如三角函数,指数函数等,这些函数称之为ufunc。这些函数会针对数组的每个元素进行操作。

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

索引,切片和迭代

一维数组可以被索引,切片,或者迭代,跟Python的列表类似。

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0

多维数组也可以索引,切片,每个axis可以分别制定索引值,切片对象。索引以元组的形式给出。

>>> def f(x,y):
...     return 10*x+y
...
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])

当提供的索引数小于axis数时,缺失的索引会被认为是:

>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])

上面的例子也可以改写成b[i, ...]

省略号...代表了需要实现完整索引的冒号,例如,数组x的秩为5,则:

  • x[1,2,...]等价于x[1,2,:,:,:]
  • x[...,3] 等价于 x[:,:,:,:,3]
  • x[4,...,5,:] 等价于 x[4,:,:,5,:]
>>> c = np.array( [[[  0,  1,  2],               # a 3D array (two stacked 2D arrays)
...                 [ 10, 12, 13]],
...                [[100,101,102],
...                 [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...]                                   # same as c[1,:,:] or c[1]
array([[100, 101, 102],
      [110, 112, 113]])
>>> c[...,2]                                   # same as c[:,:,2]
array([[  2,  13],
      [102, 113]])

迭代多维数组通过迭代第一个axis实现:

>>> for row in b:
...     print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

如果需要迭代数组的每一个元素,可以使用flat属性:

>>> for element in b.flat:
...     print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43

维度操作

改变数组的维度

每个数组都可以获取沿着每个axis方向的元素个数:

>>> a = np.floor(10*np.random.random((3,4)))
>>> a
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])
>>> a.shape
(3, 4)

数组的维度可以通过很多命令改变,例如下面的三条命令返回一个新的数组,而不会改变原始数组:

>>> a.ravel()  # 将数组展开为一维数组
array([ 2.,  8.,  0.,  6.,  4.,  5.,  1.,  1.,  8.,  9.,  3.,  6.])
>>> a.reshape(6,2)  # 直接修改数组的维度
array([[ 2.,  8.],
       [ 0.,  6.],
       [ 4.,  5.],
       [ 1.,  1.],
       [ 8.,  9.],
       [ 3.,  6.]])
>>> a.T  # 转置数组
array([[ 2.,  4.,  8.],
       [ 8.,  5.,  9.],
       [ 0.,  1.,  3.],
       [ 6.,  1.,  6.]])
>>> a.T.shape
(4, 3)
>>> a.shape
(3, 4)

reshape函数返回一个新的数组,而ndarray.resize直接修改原始数组。

>>> a
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])
>>> a.resize((2,6))
>>> a
array([[ 2.,  8.,  0.,  6.,  4.,  5.],
       [ 1.,  1.,  8.,  9.,  3.,  6.]])

如果执行reshape时某个维度被设置为-1, 则该维度值会自行推断。

>>> a.reshape(3,-1)
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])

合并数组

不同的数组可以沿着不同的axis进行合并。

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])

column_stack的作用与hstack类似:

>>> from numpy import newaxis
>>> np.column_stack((a,b))   # With 2D arrays
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])
>>> a = np.array([4.,2.])
>>> b = np.array([2.,8.])
>>> a[:,newaxis]  # This allows to have a 2D columns vector
array([[ 4.],
       [ 2.]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[ 4.,  2.],
       [ 2.,  8.]])
>>> np.vstack((a[:,newaxis],b[:,newaxis])) # The behavior of vstack is different
array([[ 4.],
       [ 2.],
       [ 2.],
       [ 8.]])

对于超过二维的多维数组,hstack根据第二条axis进行合并,vstack根据第一条axis合并。

对于复杂的情况,r_c_可以在创建数组的时候进行合并。

>>> np.r_[1:4,0,4]
array([1, 2, 3, 0, 4])

拆分数组

使用hsplit可以在水平方向拆分数组,既可以指定按几等分进行划分,也可以指定划分的位置。

>>> a = np.floor(10*np.random.random((2,12)))
>>> a
array([[ 9.,  5.,  6.,  3.,  6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 1.,  4.,  9.,  2.,  2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])
>>> np.hsplit(a,3)   # Split a into 3
[array([[ 9.,  5.,  6.,  3.],
       [ 1.,  4.,  9.,  2.]]), array([[ 6.,  8.,  0.,  7.],
       [ 2.,  1.,  0.,  6.]]), array([[ 9.,  7.,  2.,  7.],
       [ 2.,  2.,  4.,  0.]])]
>>> np.hsplit(a,(3,4))   # Split a after the third and the fourth column
[array([[ 9.,  5.,  6.],
       [ 1.,  4.,  9.]]), array([[ 3.],
       [ 2.]]), array([[ 6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])]

vsplit在垂直方向进行划分,array_split可以指定沿哪个轴进行划分。

复制和视图

当操作数组的时候,既可能复制数组也可能直接创建一个视图。

不复制的情况

简单的赋值并不会复制数组或者其数据。

>>> a = np.arange(12)
>>> b = a            # no new object is created
>>> b is a           # a and b are two names for the same ndarray object
True
>>> b.shape = 3,4    # changes the shape of a
>>> a.shape
(3, 4)

Python使用引用传值,所以函数调用也不会复制。

>>> def f(x):
...     print(id(x))
...
>>> id(a)                           # id is a unique identifier of an object
148293216
>>> f(a)
148293216

视图和浅复制

不同的数组对象可以共享相同的数据,view方法根据原数组创建一个新的视图,这个视图与原数组共享数据。

>>> c = a.view()
>>> c is a
False
>>> c.base is a                        # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>>
>>> c.shape = 2,6                      # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0,4] = 1234                      # a's data changes
>>> a
array([[   0,    1,    2,    3],
       [1234,    5,    6,    7],
       [   8,    9,   10,   11]])

使用切片返回的也是视图

>>> s = a[ : , 1:3]     # spaces added for clarity; could also be written "s = a[:,1:3]"
>>> s[:] = 10           # s[:] is a view of s. Note the difference between s=10 and s[:]=10
>>> a
array([[   0,   10,   10,    3],
       [1234,   10,   10,    7],
       [   8,   10,   10,   11]])

深度复制

调用copy方法会执行深度拷贝:

>>> d = a.copy()                          # a new array object with new data is created
>>> d is a
False
>>> d.base is a                           # d doesn't share anything with a
False
>>> d[0,0] = 9999
>>> a
array([[   0,   10,   10,    3],
       [1234,   10,   10,    7],
       [   8,   10,   10,   11]])

进阶

广播

广播主要用于处理通用函数不适用不同维度的数组时候的情况。

索引进阶

numpy提供了功能更为丰富的索引,除了通过简单的整数或者切片进行索引外,还可以通过整数数组和布尔值数组进行索引。

使用整数索引数组

>>> a = np.arange(12)**2                       # the first 12 square numbers
>>> i = np.array( [ 1,1,3,8,5 ] )              # an array of indices
>>> a[i]                                       # the elements of a at the positions i
array([ 1,  1,  9, 64, 25])
>>>
>>> j = np.array( [ [ 3, 4], [ 9, 7 ] ] )      # a bidimensional array of indices
>>> a[j]                                       # the same shape as j
array([[ 9, 16],
       [81, 49]])

当数组是多维的时候,每个索引对应数组的第一维度。

>>> palette = np.array( [ [0,0,0],                # black
...                       [255,0,0],              # red
...                       [0,255,0],              # green
...                       [0,0,255],              # blue
...                       [255,255,255] ] )       # white
>>> image = np.array( [ [ 0, 1, 2, 0 ],           # each value corresponds to a color in the palette
...                     [ 0, 3, 4, 0 ]  ] )
>>> palette[image]                            # the (2,4,3) color image
array([[[  0,   0,   0],
        [255,   0,   0],
        [  0, 255,   0],
        [  0,   0,   0]],
       [[  0,   0,   0],
        [  0,   0, 255],
        [255, 255, 255],
        [  0,   0,   0]]])

我们也可以同时针对多个维度提供索引数组,注意索引数组的shape必须一致。

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> i = np.array( [ [0,1],                        # indices for the first dim of a
...                 [1,2] ] )
>>> j = np.array( [ [2,1],                        # indices for the second dim
...                 [3,3] ] )
>>>
>>> a[i,j]                                     # i and j must have equal shape
array([[ 2,  5],
       [ 7, 11]])
>>>
>>> a[i,2]
array([[ 2,  6],
       [ 6, 10]])
>>>
>>> a[:,j]                                     # i.e., a[ : , j]
array([[[ 2,  1],
        [ 3,  3]],
       [[ 6,  5],
        [ 7,  7]],
       [[10,  9],
        [11, 11]]])

自然我们也可以将ij放在序列中,然后使用这个序列进行索引:

>>> l = [i,j]
>>> a[l]                                       # equivalent to a[i,j]
array([[ 2,  5],
       [ 7, 11]])

当时不能将ij放进numpy数组,因为使用数组会被翻译为索引数组a的第一维度。

>>> s = np.array( [i,j] )
>>> a[s]                                       # not what we want
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: index (3) out of range (0<=index<=2) in dimension 0
>>>
>>> a[tuple(s)]                                # same as a[i,j]
array([[ 2,  5],
       [ 7, 11]])

索引数组的一个常见用法就是获取最大值:

>>> time = np.linspace(20, 145, 5)                 # time scale
>>> data = np.sin(np.arange(20)).reshape(5,4)      # 4 time-dependent series
>>> time
array([  20.  ,   51.25,   82.5 ,  113.75,  145.  ])
>>> data
array([[ 0.        ,  0.84147098,  0.90929743,  0.14112001],
       [-0.7568025 , -0.95892427, -0.2794155 ,  0.6569866 ],
       [ 0.98935825,  0.41211849, -0.54402111, -0.99999021],
       [-0.53657292,  0.42016704,  0.99060736,  0.65028784],
       [-0.28790332, -0.96139749, -0.75098725,  0.14987721]])
>>>
>>> ind = data.argmax(axis=0)                   # index of the maxima for each series
>>> ind
array([2, 0, 3, 1])
>>>
>>> time_max = time[ ind]                       # times corresponding to the maxima
>>>
>>> data_max = data[ind, xrange(data.shape[1])] # => data[ind[0],0], data[ind[1],1]...
>>>
>>> time_max
array([  82.5 ,   20.  ,  113.75,   51.25])
>>> data_max
array([ 0.98935825,  0.84147098,  0.99060736,  0.6569866 ])
>>>
>>> np.all(data_max == data.max(axis=0))
True

也可以使用索引修改原始数组:

>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a[[1,3,4]] = 0
>>> a
array([0, 0, 2, 0, 0])

如果索引中存在重复的值,则以最后那个值对应的赋值为准。

>>> a = np.arange(5)
>>> a[[0,0,2]]=[1,2,3]
>>> a
array([2, 1, 3, 3, 4])

这样做和合理,但是也要注意使用s +=的操作时,结果可能跟你预期的并不一样。

>>> a = np.arange(5)
>>> a[[0,0,2]]+=1
>>> a
array([1, 1, 3, 3, 4])

尽管0出现了两次,当时对应的值只增加了一次,这是因为Python要求a+=1等价于a = a+1

使用布尔值数组索引

当我们使用布尔值索引的时候,值为True则获取元素,如果为False则忽略。

>>> a = np.arange(12).reshape(3,4)
>>> b = a > 4
>>> b                                          # b is a boolean with a's shape
array([[False, False, False, False],
       [False,  True,  True,  True],
       [ True,  True,  True,  True]], dtype=bool)
>>> a[b]                                       # 1d array with the selected elements
array([ 5,  6,  7,  8,  9, 10, 11])

这个属性在赋值时特别有用:

>>> a[b] = 0                                   # All elements of 'a' higher than 4 become 0
>>> a
array([[0, 1, 2, 3],
       [4, 0, 0, 0],
       [0, 0, 0, 0]])

下面是一个使用布尔值索引数组来绘制分形图的例子:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot( h,w, maxit=20 ):
...     """Returns an image of the Mandelbrot fractal of size (h,w)."""
...     y,x = np.ogrid[ -1.4:1.4:h*1j, -2:0.8:w*1j ]
...     c = x+y*1j
...     z = c
...     divtime = maxit + np.zeros(z.shape, dtype=int)
...
...     for i in range(maxit):
...         z = z**2 + c
...         diverge = z*np.conj(z) > 2**2            # who is diverging
...         div_now = diverge & (divtime==maxit)  # who is diverging now
...         divtime[div_now] = i                  # note when
...         z[diverge] = 2                        # avoid diverging too much
...
...     return divtime
>>> plt.imshow(mandelbrot(400,400))
>>> plt.show()

1.png

另外一种使用布尔值索引数组的方法是针对每个维度提供一个一维的布尔值数组。

>>> a = np.arange(12).reshape(3,4)
>>> b1 = np.array([False,True,True])             # first dim selection
>>> b2 = np.array([True,False,True,False])       # second dim selection
>>>
>>> a[b1,:]                                   # selecting rows
array([[ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> a[b1]                                     # same thing
array([[ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> a[:,b2]                                   # selecting columns
array([[ 0,  2],
       [ 4,  6],
       [ 8, 10]])
>>>
>>> a[b1,b2]                                  # a weird thing to do
array([ 4, 10])

注意索引数组的长度必须与数组的维度匹配。

ix_()函数

该函数用来组合不同的矢量。

>>> a = np.array([2,3,4,5])
>>> b = np.array([8,5,4])
>>> c = np.array([5,4,6,8,3])
>>> ax,bx,cx = np.ix_(a,b,c)
>>> ax
array([[[2]],
       [[3]],
       [[4]],
       [[5]]])
>>> bx
array([[[8],
        [5],
        [4]]])
>>> cx
array([[[5, 4, 6, 8, 3]]])
>>> ax.shape, bx.shape, cx.shape
((4, 1, 1), (1, 3, 1), (1, 1, 5))
>>> result = ax+bx*cx
>>> result
array([[[42, 34, 50, 66, 26],
        [27, 22, 32, 42, 17],
        [22, 18, 26, 34, 14]],
       [[43, 35, 51, 67, 27],
        [28, 23, 33, 43, 18],
        [23, 19, 27, 35, 15]],
       [[44, 36, 52, 68, 28],
        [29, 24, 34, 44, 19],
        [24, 20, 28, 36, 16]],
       [[45, 37, 53, 69, 29],
        [30, 25, 35, 45, 20],
        [25, 21, 29, 37, 17]]])
>>> result[3,2,4]
17
>>> a[3]+b[2]*c[4]
17

也可以使用reduce实现:

>>> def ufunc_reduce(ufct, *vectors):
...    vs = np.ix_(*vectors)
...    r = ufct.identity
...    for v in vs:
...        r = ufct(r,v)
...    return r

然后调用该函数:

>>> ufunc_reduce(np.add,a,b,c)
array([[[15, 14, 16, 18, 13],
        [12, 11, 13, 15, 10],
        [11, 10, 12, 14,  9]],
       [[16, 15, 17, 19, 14],
        [13, 12, 14, 16, 11],
        [12, 11, 13, 15, 10]],
       [[17, 16, 18, 20, 15],
        [14, 13, 15, 17, 12],
        [13, 12, 14, 16, 11]],
       [[18, 17, 19, 21, 16],
        [15, 14, 16, 18, 13],
        [14, 13, 15, 17, 12]]])

线性代数

简单的矩阵操作

>>> import numpy as np
>>> a = np.array([[1.0, 2.0], [3.0, 4.0]])
>>> print(a)
[[ 1.  2.]
 [ 3.  4.]]

>>> a.transpose()
array([[ 1.,  3.],
       [ 2.,  4.]])

>>> np.linalg.inv(a)
array([[-2. ,  1. ],
       [ 1.5, -0.5]])

>>> u = np.eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[ 1.,  0.],
       [ 0.,  1.]])
>>> j = np.array([[0.0, -1.0], [1.0, 0.0]])

>>> np.dot (j, j) # matrix product
array([[-1.,  0.],
       [ 0., -1.]])

>>> np.trace(u)  # trace
2.0

>>> y = np.array([[5.], [7.]])
>>> np.linalg.solve(a, y)
array([[-3.],
       [ 4.]])

>>> np.linalg.eig(j)
(array([ 0.+1.j,  0.-1.j]), array([[ 0.70710678+0.j        ,  0.70710678-0.j        ],
       [ 0.00000000-0.70710678j,  0.00000000+0.70710678j]]))

常用技巧

自动转型

当修改数组的维度时,如果省略其中一个维度值,numpy会自动推断该值:

>>> a = np.arange(30)
>>> a.shape = 2,-1,3  # -1 means "whatever is needed"
>>> a.shape
(2, 5, 3)
>>> a
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11],
        [12, 13, 14]],
       [[15, 16, 17],
        [18, 19, 20],
        [21, 22, 23],
        [24, 25, 26],
        [27, 28, 29]]])

直方图

numpy 提供了 histogram函数用于获取直方图的相关数据。注意matplotlib也提供了函数hist,但是两者不一样,histogram只是提供数组,而hist会自动绘图。

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> # Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2
>>> mu, sigma = 2, 0.5
>>> v = np.random.normal(mu,sigma,10000)
>>> # Plot a normalized histogram with 50 bins
>>> plt.hist(v, bins=50, normed=1)       # matplotlib version (plot)
>>> plt.show()

../_images/quickstart-2_00_00.png

>> # Compute the histogram with numpy and then plot it
>>> (n, bins) = np.histogram(v, bins=50, normed=True)  # NumPy version (no plot)
>>> plt.plot(.5*(bins[1:]+bins[:-1]), n)
>>> plt.show()

../_images/quickstart-2_01_00.png

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ACM算法日常

HDU1106:排序 (重新修正)

之前发过一篇HDU 1106的题目,但是因为有童鞋说那篇的源码提交后超时,我们的AlphaWA童鞋重新做了一遍,这次是0ms!算是修正之前的问题,非常感谢~

831
来自专栏软件开发 -- 分享 互助 成长

使用数字进行字符遍历

有些时候使用数字进行遍历,然后将数字转化成需要的进制数,再将进制数对应成需要的字符是一种非常有效的方法。 如: 输入一个正整数X,在下面的等式左边的数字之间添加...

22010
来自专栏猿人谷

C++ STL算法系列3---求和:accumulate

 该算法在numeric头文件中定义。 假设vec是一个int型的vector对象,下面的代码: //sum the elements in vec start...

2138
来自专栏Python爬虫与算法进阶

说一道排序题

关于Python的sorted排序算法,这篇文章讲的比较详细:python sort函数内部实现原理,说到Python使用的是著名的Timesort算法。

742
来自专栏Vamei实验室

Python补充05 字符串格式化 (%操作符)

在许多编程语言中都包含有格式化字符串的功能,比如C和Fortran语言中的格式化输入输出。Python中内置有对字符串进行格式化的操作%。 模板 格式化字符串时...

2269
来自专栏有趣的Python

7-Java基础语法-数组之二维数组

所谓二维数组,可以简单的理解为是一种“特殊”的一维数组,它的每个数组空间中保存的是一个一维数组。

1101
来自专栏蓝天

彻底理解C/C++指针

彻底理解C++指针.pdf 推荐阅读pdf版本,原因是从WPS复制粘贴到ChinaUnix后格式有些丢了。

911
来自专栏书山有路勤为径

包含min函数的栈

LeetCode 155. Min Stack 设计一个栈,支持如下操作,这些操作的算法复杂度需要是常数级,O(1) 1.push(x) : 将元素x压入...

1001
来自专栏Jack-Cui

第七天、判断三角形的类型

    根据输入的三角形的三条边判断三角形的类型,并输出它的面积和类型。 C代码: /*第七天、判断三角形的类型*/ #include <stdio.h> ...

2140
来自专栏web前端教室

js数组去重的思路与缓动公式

前端开发的面试中,至少有一类题是必出的,那就是去重。什么叫去重呢?就是把一组字符串中重复出现的,都删除掉。 这种题重要的是解决的思路要正确,思路正确的话其实也很...

2238

扫码关注云+社区

领取腾讯云代金券