专栏首页祝威廉ElasticSearch QueryCache漫谈

ElasticSearch QueryCache漫谈

前言

这些天在做ES调优,因为之前更多的是考虑ES的架构和可运维性,并没有过多关注query调优这块。今天一查Query Cache相关的内容,发现是少之又少。于是自己深入Dig了下,总算是有所了解。

Query Cache是什么

首先 ES Query Cache是实例级别的,作用域是Node实例。其次,ES Query Cache 本质是缓存Query里面的子Query的查询结果。他是按照子Query来确定是否被Cache。 Cache的结果是DocIdSet,可以简单理解为布隆过滤器。

如何判定一个子Query是否会被Cache住

ES已经比较智能,你可以写一个非常复杂的Query,但是他会自动挑选里面某一部分进行Cache.那么我们如何知道一个子Query是否会被Cache住呢?遗憾的是现在没有文档做罗列,不过我们根据LRUQueryCache实现类,观察到如下逻辑:

  1. 检查这个Query自身提供的isCacheable方法,如果可以的话继续做下一步判定
  2. 判定对应的Segment是否支持Cache,如果ok,执行缓存动作,进一步判定
  3. 执行QueryCachePolicy相应的策略方法。该方法做了一些枚举,比如TermQuery,MatchAllDocsQuery等是不缓存的,然后会根据使用频次来确定是否加入到缓存。

所以,我们可以简单的找到对应的Query实现,查看相应的isCacheable方法。 比如BinaryDocValuesRangeQuery,也就是Range查询(Int,Double等),对应的isCache方法如下:

public boolean isCacheable(LeafReaderContext ctx) {
                return DocValues.isCacheable(ctx, fieldName);
            }

  /**
   * Returns {@code true} if the specified docvalues fields have not been updated
   */
  public static boolean isCacheable(LeafReaderContext ctx, String... fields) {
    for (String field : fields) {
      FieldInfo fi = ctx.reader().getFieldInfos().fieldInfo(field);
      if (fi != null && fi.getDocValuesGen() > -1)
        return false;
    }
    return true;
  }

从上面代码可以知道,通常简单的DocValues字段,做Range查询都是支持Cache的。那么TermRangeQuery呢?其实也是可以cache的。对应的代码就更简单了:

public boolean isCacheable(LeafReaderContext ctx) {
        return true;
      }

我们继续看,termQuery呢?打开TermQuery你会发现他的isCacheable也是返回true,但是因为在第三步的的QueryCache策略里的shouldNeverCache方法中被判定为不能缓存,所以不会进行缓存。

一般而言QueryCache只会缓存细粒度的结果,比如BoolQuery之类肯定是不会缓存的。

常见的一些配置

首先,是缓存肯定会做缓存条数和内存的限制。内存限制通过参数:

indices.queries.cache.size = 10%

控制。 条数则是通过参数:

indices.queries.cache.count=1000

这里的cache count指是query的条数。但是在node stats APi 你并不能看到这个值的情况,你会看到的两个让人迷惑的指标:

        cache_count
        cache_size

前面我们提及,虽然我们cache一个子query,但其实因为这个query对应的segment是很多的,所以系统需要缓存多个segment查询后对应的bitset结果。于是我们有了公式:

cacheSize = 当前符合cache条件的segment * 符合cache条件的子query数量

也就是一个子query会缓存多份数据,每份数据来源于相应的segment。 cacheCount 则是历史所有发生的cache行为。

一个符合条件的子query作用于某个segment时,这个segment如果满足以下任一条件,则会被cache住:

  1. 记录数> 10000
  2. 记录数占所在索引总文档数比例 > 3%

通常我们认为MultiTermQuery,MultiTermQueryConstantScoreWrapper,TermInSetQuery,PointQuery创建过程是比较重的,所以在缓存策略里,他们访问的较少也会被缓存。

Query Cache索引结构

有一个ES Node级别的Cache,该Cache你可以理解为一个Map,该Map又会针对每个Segment有一个LeafCache,LeaCache的key是query,value则是DocIdSet。这样是不是清晰了很多。添加cache的时候,会注册一个回调,如果Segment被合并或者删除,那么就会被移除缓存。

过期策略

每次新添加一个cache都会检测下是否需要过期一些query。如果Segment被合并或者删除,那么也会清理掉对应的缓存。

UsageTrackingQueryCachingPolicy

在ES里,QueryCacheingPolicy的默认实现是UsageTrackingQueryCachingPolicy。该Policy的基本思路是根据使用频率决定是否缓存。对于构建成本较高的索引,比如MultiTermQuery,MultiTermQueryConstantScoreWrapper,TermInSetQuery,PointQuery 最近使用超过2次(维护了一个256大小的环状使用历史记录)则会被索引。而且其他的一些query则需要5次。 同时,UsageTrackingQueryCachingPolicy 还维护了一个不使用cache的Query列表,比如TermQuery,MatchAllDocsQuery,MatchNoDocsQuery,以及子query为空的BooleanQuery,DisjunctionMaxQuery。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 多MLSQL-Instance管理

    MLSQL-Instance 就是一个MLSQL实例,但是不管什么原因,我们总是需要启动多个MLSQL实例的,这个时候我们就需要有 能够管理的和代理转发的工具...

    用户2936994
  • 初冬的阳光-谈推荐,产品,需求

    今天AQI指数是22,比房间开着净化器(40)还好些。加上能够和这初冬温度恰好中和的阳光的击打,穿着短裤在阳台的吊床上,也是不冷的。然而阳光还是要点滴洒落的感觉...

    用户2936994
  • 是时候丢掉Spark Streaming 升级到Structured Streaming了

    又是一个超长的标题(摊手┓( ´∀` )┏)。Spark Streaming 历史比较悠久,也确实非常好用,更重要的是,大家已经用熟了,有的还做了不少工具了,所...

    用户2936994
  • 3分钟短文:说说Laravel通用缓存Cache的使用技巧

    前一期我们介绍了存储用户会话数据到服务器,并通过框架提供的Session类 进行数据读写操作的方法。

    程序员小助手
  • 第一篇:SpringBoot高级-缓存入门

    版权声明:本文为博主原创文章,未经博主允许不得转载。 ...

    用户1212940
  • MySQL5.5 my.cnf配置参考

    主要配置参数转载自: http://www.linuxyw.com/a/shujuku/20130506/216.html

    二狗不要跑
  • SQL Server 2012 的12个激动人心的功能

    微软已经发布了众所期待的 SQL Server 2012,让我们来看看这个新版给我们带来了什么激动人心的功能吧。

    杨强生
  • 06 . Nginx静态资源缓存

    youmen
  • 高并发下的各种缓存

    Cache在大家最开始接触开发的时候应该就听过许多了,比如浏览器缓存、OS中的缓存、什么缓存一致性等等,各式各样的Cache,看起来各种高大上的样子,看着群里或...

    邹志全
  • 服务器架设笔记——打通MySQL和Apache

            在《服务器架设笔记——使用Apache插件解析简单请求》一文中,我们已经可以获取请求内容。这只是万里长征的第一步。因为一般来说,客户端向服务器发...

    方亮

扫码关注云+社区

领取腾讯云代金券