前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Generative Adversarial Network

Generative Adversarial Network

作者头像
小飞侠xp
发布2018-08-29 15:01:35
3410
发布2018-08-29 15:01:35
举报

这里我们将建立 一个对抗生成网络 (GAN)训练MNIST,并在最后生成新的手写数字。

这里先介绍几个Demo:

Pix2pix 基本上就是你画一个东西它就能生成类似的图片

Pix2pix生成的猫

CycleGAN 这里视频可以让马看起来像斑马。

gan_diagram

GAN背后的思想是你有一个生成器和辨别器,它们都处在这样的一个博弈中,生成器产生假图像,比如假数据,让它看起来更像真数据,然后辨别器努力辨识该数据是真或是假。所以生成器将假数据传递给辨别器,而你将真数据传递给辨别器,然后由辨别器判定它是真是假。当你在训练时,生成器会学习生成图像和数据,让它们看起来尽量与真实数据一样,在这个过程中它会模仿实际真实数据的概率分布,通过这种方式,你可以生成与真实世界中看起来一样的新图像、新数据。

这里导入包和数据集

代码语言:javascript
复制
%matplotlib inline

import pickle as pkl
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data')

模型输入

这里创建两个输入,辨别器的输入为inputs_real,生成器的输入为inputs_z。

代码语言:javascript
复制
def model_inputs(real_dim, z_dim):
    inputs_real = tf.placeholder(tf.float32,(None ,real_dim),name ='input_real')
    inputs_z = tf.placeholder(tf.float32,(None,z_dim),name = 'input_z') 
    return inputs_real, inputs_z

gan_network

上图显示了整个网络的样子,这里生成器输入是我们的z,它只是一个随机向量,一种随机白噪声,我们会将其传入生成器,然后生成器学习如何将这个随机向量Z转变为tanh层中的图像,tanh的输出范围为-1到1,这意味我们需要做转化工作,需要转换MNIST,使其取值-1到1之间。然后再将其传入到辨别器网络。

生成器

代码语言:javascript
复制
def generator(z, out_dim, n_units=128, reuse=False,  alpha=0.01):
    ''' Build the generator network.
    
        Arguments
        ---------
        z : Input tensor for the generator
        out_dim : Shape of the generator output
        n_units : Number of units in hidden layer
        reuse : Reuse the variables with tf.variable_scope
        alpha : leak parameter for leaky ReLU
        
        Returns
        -------
        out, logits: 
    '''
    with tf.variable_scope('generator',reuse = reuse) :
        # Hidden layer
        h1 = tf.layers.dense(z,n_units,activation = None)
        # Leaky ReLU
        h1 = tf.maximum(alpha * h1,h1)
        
        # Logits and tanh output
        logits = tf.layers.dense(h1,out_dim)
        out = tf.tanh(logits)
        
        return out

使用tf.variable_scope,需要声明with tf.variable_scope('scope_name', reuse=False):这里我们使用generator作为域的名称,所以基本上所有的变量都将以generator开头。

这里我们选择重用,所以它将告诉作用域重用本网络中的变量。那么,我们从函数参数中获得reuse,默认情况下它是False。tf.layers.dense是一个全连接层,你可以直接使用层模块,因为它是高级的,它会为你执行所有权重初始化。

辨别器

辨别器和生成器构造方法差不多。

代码语言:javascript
复制
def discriminator(x, n_units=128, reuse=False, alpha=0.01):
    ''' Build the discriminator network.
    
        Arguments
        ---------
        x : Input tensor for the discriminator
        n_units: Number of units in hidden layer
        reuse : Reuse the variables with tf.variable_scope
        alpha : leak parameter for leaky ReLU
        
        Returns
        -------
        out, logits: 
    '''
    with tf.variable_scope('discriminator',reuse = reuse):
        # Hidden layer
        h1 =tf.layers.dense(x,n_units,activation = None)
        # Leaky ReLU
        h1 =tf.maximum(alpha * h1,h1)
        
        logits = tf.layers.dense(h1,1,activation = None)
        out =tf.sigmod(logits)
        
        return out, logits

超参数

代码语言:javascript
复制
# Size of input image to discriminator
input_size = 784 # 28x28 MNIST images flattened
# Size of latent vector to generator
z_size = 100
# Sizes of hidden layers in generator and discriminator
g_hidden_size = 128
d_hidden_size = 128
# Leak factor for leaky ReLU
alpha = 0.01
# Label smoothing 
smooth = 0.1

构建网络

代码语言:javascript
复制
tf.reset_default_graph()
# Create our input placeholders
input_real, input_z = model_inputs(input_size, z_size)

# Build the model
g_model = generator(input_z, input_size)
# g_model is the generator output

d_model_real, d_logits_real = discriminator(input_real)
d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

这里辨别器用相同的权重,所以reuse这里为true.

计算辨别器及生成器的损失

同时训练辨别器和生成器网络,我们需要这两个不同网络的损失。对辨别器总损失:是真实图像和假图像损失之和。

关于标签,对于真实图像,我们想让辨别器知道它们是真的,我们希望标签全部是1。为了帮助辨别器更好的泛化,我们要执行一个叫做标签平滑的操作,创建一个smooth的参数,略小于1。假数据辨别器损失也类似,设定这些标签全部为0。最后对于生成器,再次使用d_logits_fake,但这次我们的标签全部为1,我们想让生成器欺骗辨别器,我们想让辨别器认为假图像是真的

代码语言:javascript
复制
# Calculate losses
d_loss_real = tf.reduce_mean(
                  tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, 
                                                          labels=tf.ones_like(d_logits_real) * (1 - smooth)))
d_loss_fake = tf.reduce_mean(
                  tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, 
                                                          labels=tf.zeros_like(d_logits_real)))
d_loss = d_loss_real + d_loss_fake

g_loss = tf.reduce_mean(
             tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
                                                     labels=tf.ones_like(d_logits_fake)))

优化器

我们要分别更新生成器和辨别器变量,首先获取所有可训练的变量

代码语言:javascript
复制
# Optimizers
learning_rate = 0.002

# Get the trainable_variables, split into G and D parts
t_vars = tf.trainable_variables()
g_vars = [var for var in t_vars if var.name.startswith('generator')]
d_vars = [var for var in t_vars if var.name.startswith('discriminator')]

d_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(d_loss, var_list=d_vars)
g_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(g_loss, var_list=g_vars)

训练

代码语言:javascript
复制
batch_size = 100
epochs = 100
samples = []
losses = []
# Only save generator variables
saver = tf.train.Saver(var_list=g_vars)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for e in range(epochs):
        for ii in range(mnist.train.num_examples//batch_size):
            batch = mnist.train.next_batch(batch_size)
            
            # Get images, reshape and rescale to pass to D
            batch_images = batch[0].reshape((batch_size, 784))
            batch_images = batch_images*2 - 1
            
            # Sample random noise for G
            batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))
            
            # Run optimizers
            _ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z})
            _ = sess.run(g_train_opt, feed_dict={input_z: batch_z})
        
        # At the end of each epoch, get the losses and print them out
        train_loss_d = sess.run(d_loss, {input_z: batch_z, input_real: batch_images})
        train_loss_g = g_loss.eval({input_z: batch_z})
            
        print("Epoch {}/{}...".format(e+1, epochs),
              "Discriminator Loss: {:.4f}...".format(train_loss_d),
              "Generator Loss: {:.4f}".format(train_loss_g))    
        # Save losses to view after training
        losses.append((train_loss_d, train_loss_g))
        
        # Sample from generator as we're training for viewing afterwards
        sample_z = np.random.uniform(-1, 1, size=(16, z_size))
        gen_samples = sess.run(
                       generator(input_z, input_size, reuse=True),
                       feed_dict={input_z: sample_z})
        samples.append(gen_samples)
        saver.save(sess, './checkpoints/generator.ckpt')

# Save training generator samples
with open('train_samples.pkl', 'wb') as f:
    pkl.dump(samples, f)

结果

改进GAN

我向你展示的 GAN,在生成器和辨别器中只使用了一个隐藏层。这个 GAN 的结果已经非常不错了,但仍然有很多噪声图像,以及有些图像看起来不太像数字。但是,要让生成器生成的图像与 MNIST 数据集几乎一样,是完全可能的。

这来自一篇题为 Improved Techniques for Training GANs 的文章。那么,它们如何生成如此美观的图像呢?

批归一化

提醒一下,在三层情况下你可能无法使它很好地工作。网络会变得对权重的初始值非常敏感,导致无法训练。我们可以使用 批归一化(Batch Normalization) 来解决这个问题。原理很简单。就像我们对网络输入的做法一样,我们可以对每个层的输入进行归一化。也就是说,缩放层输入,使它具有零均值和标准差 1。经发现,批归一化对于构建深度 GAN 非常有必要。

欢迎大家看我以前写的Batch Normalization

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.01.10 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 模型输入
  • 生成器
  • 辨别器
  • 超参数
  • 构建网络
  • 计算辨别器及生成器的损失
  • 优化器
    • 训练
      • 结果
        • 改进GAN
        • 批归一化
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档