K最近邻与线性分类器(下)

Linear classifier

学习一个函数

,输入是x,其中x是图像,W是参数(线性回归中每一个

的系数),b为常数项,输出是10个数字,代表归属于不同的类。我们可以看下面的这个例子:假设一张图片由2*2的像素表示,共有三类,那上述公式的计算如下

可以看到被预测为猫的分数为负数,代表选择的W并不能很好的完成分类任务,需要调整,如何调整呢?在调整之前现需要定义一个分类好坏的标准。

损失函数

损失函数(loss function),它是用来量化预测分类标签的得分与真实标签之间一致性的,如果它的值为0那么表示模型可以正确分类所有的图片,如果损失值非常高,那么图片很难被正确分类。简单来说它是度量W的值好坏的一个标准。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏SnailTyan

Deformable Convolutional Networks论文翻译——中英文对照

Deformable Convolutional Networks Abstract Convolutional neural networks (CNNs) ...

3260
来自专栏算法修养

文本分类学习 (八)SVM 入门之线性分类器

SVM 和线性分类器是分不开的。因为SVM的核心:高维空间中,在线性可分(如果线性不可分那么就使用核函数转换为更高维从而变的线性可分)的数据集中寻找一个最优的超...

621
来自专栏机器学习原理

深度学习——目标检测(1)什么是目标检测?RCNNRCNN的检测流程:Bounding-box回归

前言:深度学习在图像的应用中目标检测是最基本也是最常用的,下面介绍几种常见的目标检测算法或者模型

1752
来自专栏机器学习养成记

k折交叉验证(R语言)

“ 机器学习中需要把数据分为训练集和测试集,因此如何划分训练集和测试集就成为影响模型效果的重要因素。本文介绍一种常用的划分最优训练集和测试集的方法——k折交叉验...

2.4K9
来自专栏机器学习算法工程师

重磅|基于深度学习的目标检测综述(一)

作者:叶 虎 编辑:黄俊嘉 前 言 图像分类,检测及分割是计算机视觉领域的三大任务。图像分类模型(详情见[这里](https://medium.c...

8125
来自专栏计算机视觉战队

干货——线性分类(上)

图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像。我们还介绍了k-Nearest Neighbor (k-NN)分类器,该分类器的基本思想...

1302
来自专栏IT派

用Python实现机器学习算法——简单的神经网络

导读:Python 被称为是最接近 AI 的语言。最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用Python(3.6及以...

1070
来自专栏AI研习社

前Twitter资深工程师详解YOLO 2与YOLO 9000目标检测系统

AI研习社按:YOLO是Joseph Redmon和Ali Farhadi等人于2015年提出的第一个基于单个神经网络的目标检测系统。在今年CVPR上,Jose...

5526
来自专栏深度学习与计算机视觉

Object Detection系列(四) Faster R-CNN

Object Detection系列(一) R-CNN Object Detection系列(二) SPP-Net Object Detection系列...

3345
来自专栏WD学习记录

机器学习 学习笔记(19)神经网络

神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

1912

扫码关注云+社区

领取腾讯云代金券