【Java入门提高篇】Day33 Java容器类详解(十五)PriorityQueue详解

 今天要介绍的是基础容器类(为了与并发容器类区分开来而命名的名字)中的另一个成员——PriorityQueue,它的大名叫做优先级队列,想必即使没有用过也该有所耳闻吧,什么?没。。没听过?emmm。。。那就更该认真看看了。

  通过本篇你将了解到:

  1、PriorityQueue是什么?

  2、PriorityQueue的内部结构是什么?

  3、二叉堆、大顶堆、小顶堆分别是什么?有什么特性?

  4、小顶堆是如何实现的,如何用数组表示?

  5、小顶堆的删除、插入操作是如何进行的?

  6、PriorityQueue的源码解析。

  7、PriorityQueue的应用场景。

一、PriorityQueue简介

  PriorityQueue也是Queue的一个继承者,相比于一般的列表,它的特点便如它的名字一样,出队的时候可以按照优先级进行出队,所以不像LinkedList那样只能按照插入的顺序出队,PriorityQueue是可以根据给定的优先级顺序进行出队的。这里说的给定优先级顺序既可以是内部比较器,也可以是外部比较器。PriorityQueue内部是根据小顶堆的结构进行存储的,所谓小顶堆的意思,便是最小的元素总是在最上面,每次出队总是将堆顶元素移除,这样便能让出队变得有序,至于什么是小顶堆,后面会有详细介绍。

  比如说,比较常见的场景就是任务队列,队列动态插入,后面的任务优先级高的需要被先执行,那么使用优先级队列就可以比较好的实现这样的需求。下面我们模拟一下这个场景:

public class PriorityQueueTest {
    public static void main(String[] args){
        // 传入外部比较器,
        //PriorityQueue<Task> taskQueue = new PriorityQueue<>(Comparator.comparingInt(Task::getPriority));
        //PriorityQueue<Task> taskQueue = new PriorityQueue<>((t1, t2) -> t1.getPriority() - t2.getPriority());
        PriorityQueue<Task> taskQueue = new PriorityQueue<>(new Comparator<Task>() {
            @Override
            public int compare(Task t1, Task t2) {
                return t1.getPriority() - t2.getPriority();
            }
        });

        // 添加六个任务
        taskQueue.add(new Task(1, "learn java"));
        taskQueue.add(new Task(3, "learn c++"));
        taskQueue.add(new Task(4, "learn c#"));
        taskQueue.add(new Task(2, "learn python"));
        taskQueue.add(new Task(2, "learn php"));
        taskQueue.add(new Task(5, "learn js"));

        // 出队
        while (!taskQueue.isEmpty()){
            System.out.println(taskQueue.poll());
        }
    }
}

class Task{
    /**
     * 任务优先级
     */
    private int priority;
    /**
     * 任务名称
     */
    private String taskName;

    public Task() {
    }

    public Task(int priority, String taskName) {
        this.priority = priority;
        this.taskName = taskName;
    }

    public int getPriority() {
        return priority;
    }

    public void setPriority(int priority) {
        this.priority = priority;
    }

    public String getTaskName() {
        return taskName;
    }

    public void setTaskName(String taskName) {
        this.taskName = taskName;
    }

    @Override
    public String toString() {
        return "Task{" +
                "priority=" + priority +
                ", taskName='" + taskName + '\'' +
                '}';
    }
}

  输出如下:

Task{priority=1, taskName='learn java'}
Task{priority=2, taskName='learn python'}
Task{priority=2, taskName='learn php'}
Task{priority=3, taskName='learn c++'}
Task{priority=4, taskName='learn c#'}
Task{priority=5, taskName='learn js'}

  可以看到,输出的时候是按照我们设定的优先级顺序进行输出的,由于默认的是小顶堆,所以这里Priority值小的会被先输出。

二、PriorityQueue的内部结构

  上面已经提到了,PriorityQueue的内部结构其实是按照小顶堆的结构进行存储的,那么什么是小顶堆呢?说到小顶堆,还是先从堆开始介绍吧。

  堆和栈一样是一种很基础的数据结构,在维基百科中的介绍如下:

(英语:Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。在队列中,调度程序反复提取队列中第一个作业并运行,因为实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权。堆即为解决此类问题设计的一种数据结构。

  用图来表示的话就像这样:

  说完了堆,再来聊聊它的进化版——二叉堆,同样引用维基百科中的介绍:

二叉堆(英语:binary heap)是一种特殊的,二叉堆是完全二叉树或者是近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。 当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。

  其中,最大堆也叫做大顶堆或者大根堆,最小堆也叫做小顶堆或者小根堆。上面的图一其实就是一个大顶堆,而图二则是小顶堆。PriorityQueue是通过数组表示的小顶堆实现的,既然如此,PriorityQueue的排序特性自然与小顶堆的特性一致,下面便介绍小顶堆如何使用数组进行表示以及插入删除时的调整。

  下面是一个由10,16,20,22,18,25,26,30,24,23构成的小顶堆:

  将其从第一个元素开始依次从上到下,从左到右给每个元素添加一个序号,从0开始,这样就得到了相应元素在数组中的位置,而且这个序号是很有规则的,第k个元素的左孩子的序号为2k+1,右孩子的序号为2k+2,这样就很容易根据序号直接算出对应孩子的位置,时间复杂度为o(1)。这也就是为什么可以用数组来存储堆结构的原因了。

  再来看看小顶堆是如何插入元素的,假设我们插入一个元素15:

  插入元素的调整其实很简单,就是先插入到最后,然后再依次与其父节点进行比较,如果小于其父节点,则互换,直到不需要调整或者父节点为null为止。

  那再来看看移除元素:

  嗯,过程其实也很简单,先用最后的元素当替补,然后再从上往下进行调整。

三、PriorityQueue源码解析

  小顶堆已经介绍完了,那PriorityQueue就没什么内容可讲了,嗯,那散了吧

好了好了,不开玩笑了,接下来让我们一起来看看源码中是如何实现的。

  先来继承结构:

  PriorityQueue继承自AbstractQueue,像这样的Abstract开头的抽象类,想必应该不陌生了,就是继承自指定接口然后进行了一些默认实现。

  来看看PriorityQueue的内部成员:

    // 默认初始化容量
    private static final int DEFAULT_INITIAL_CAPACITY = 11;

    /**
     * 优先级队列是使用平衡二叉堆表示的: 节点queue[n]的两个孩子分别为
     * queue[2*n+1] 和 queue[2*(n+1)].  队列的优先级是由比较器或者
     * 元素的自然排序决定的, 对于堆中的任意元素n,其后代d满足:n<=d
     * 如果堆是非空的,则堆中最小值为queue[0]。
     */
    transient Object[] queue; 

    /**
     * 队列中元素个数
     */
    private int size = 0;

    /**
     * 比较器
     */
    private final Comparator<? super E> comparator;

    /**
     * 修改次数
     */
    transient int modCount = 0; 

  可以看到内部使用的是一个Object数组进行元素的存储,并对该数组进行了详细的注释,所以不管是根据子节点找父节点,还是根据父节点找子节点都肥肠的方便。

  再来看看它的构造函数,有点多,一共有六个构造函数:

    /**
     * 使用默认的容量(11)来构造一个空的优先级队列,使用元素的自然顺序进行排序(此时元素必须实现comparable接口)
     */
    public PriorityQueue() {
        this(DEFAULT_INITIAL_CAPACITY, null);
    }

    /**
     * 使用指定容量来构造一个空的优先级队列,使用元素的自然顺序进行排序(此时元素必须实现comparable接口)
     * 但如果指定的容量小于1则会抛出异常
     */
    public PriorityQueue(int initialCapacity) {
        this(initialCapacity, null);
    }

    /**
     * 使用默认的容量(11)构造一个优先级队列,使用指定的比较器进行排序
     */
    public PriorityQueue(Comparator<? super E> comparator) {
        this(DEFAULT_INITIAL_CAPACITY, comparator);
    }

    /**
     * 使用指定容量创建一个优先级队列,并使用指定比较器进行排序。
     * 但如果指定的容量小于1则会抛出异常
     */
    public PriorityQueue(int initialCapacity,
                         Comparator<? super E> comparator) {
        if (initialCapacity < 1)
            throw new IllegalArgumentException();
        this.queue = new Object[initialCapacity];
        this.comparator = comparator;
    }

    /**
     * 使用指定集合的所有元素构造一个优先级队列,
     * 如果该集合为SortedSet或者PriorityQueue类型,则会使用相同的顺序进行排序,
     * 否则,将使用元素的自然排序(此时元素必须实现comparable接口),否则会抛出异常
     * 并且集合中不能有null元素,否则会抛出异常
     */
    @SuppressWarnings("unchecked")
    public PriorityQueue(Collection<? extends E> c) {
        if (c instanceof SortedSet<?>) {
            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
            this.comparator = (Comparator<? super E>) ss.comparator();
            initElementsFromCollection(ss);
        }
        else if (c instanceof PriorityQueue<?>) {
            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
            this.comparator = (Comparator<? super E>) pq.comparator();
            initFromPriorityQueue(pq);
        }
        else {
            this.comparator = null;
            initFromCollection(c);
        }
    }

    /**
     * 使用指定的优先级队列中所有元素来构造一个新的优先级队列.  将使用原有顺序进行排序。
     */
    @SuppressWarnings("unchecked")
    public PriorityQueue(PriorityQueue<? extends E> c) {
        this.comparator = (Comparator<? super E>) c.comparator();
        initFromPriorityQueue(c);
    }

    /**
     * 根据指定的有序集合创建一个优先级队列,将使用原有顺序进行排序
     */
    @SuppressWarnings("unchecked")
    public PriorityQueue(SortedSet<? extends E> c) {
        this.comparator = (Comparator<? super E>) c.comparator();
        initElementsFromCollection(c);
    }

  从集合中构造优先级队列的时候,调用了几个初始化函数:

    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
        if (c.getClass() == PriorityQueue.class) {
            this.queue = c.toArray();
            this.size = c.size();
        } else {
            initFromCollection(c);
        }
    }

    private void initElementsFromCollection(Collection<? extends E> c) {
        Object[] a = c.toArray();
        // If c.toArray incorrectly doesn't return Object[], copy it.
        if (a.getClass() != Object[].class)
            a = Arrays.copyOf(a, a.length, Object[].class);
        int len = a.length;
        if (len == 1 || this.comparator != null)
            for (int i = 0; i < len; i++)
                if (a[i] == null)
                    throw new NullPointerException();
        this.queue = a;
        this.size = a.length;
    }

    private void initFromCollection(Collection<? extends E> c) {
        initElementsFromCollection(c);
        heapify();
    }

  initFromPriorityQueue即从另外一个优先级队列构造一个新的优先级队列,此时内部的数组元素不需要进行调整,只需要将原数组元素都复制过来即可。但是从其他非PriorityQueue的集合中构造优先级队列时,需要先将元素复制过来后再进行调整,此时调用的是heapify方法:

    private void heapify() {
        // 从最后一个非叶子节点开始从下往上调整
        for (int i = (size >>> 1) - 1; i >= 0; i--)
            siftDown(i, (E) queue[i]);
    }

    // 划重点了,这个函数即对应上面的元素删除时从上往下调整的步骤
    private void siftDown(int k, E x) {
        if (comparator != null)
            // 如果比较器不为null,则使用比较器进行比较
            siftDownUsingComparator(k, x);
        else
            // 否则使用元素的compareTo方法进行比较
            siftDownComparable(k, x);
    }

    private void siftDownUsingComparator(int k, E x) {
        // 使用half记录队列size的一半,如果比half小的话,说明不是叶子节点
        // 因为最后一个节点的序号为size - 1,其父节点的序号为(size - 2) / 2或者(size - 3 ) / 2
        // 所以half所在位置刚好是第一个叶子节点
        int half = size >>> 1;
        while (k < half) {
            // 如果不是叶子节点,找出其孩子中较小的那个并用其替换
            int child = (k << 1) + 1;
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                comparator.compare((E) c, (E) queue[right]) > 0)
                c = queue[child = right];
            if (comparator.compare(x, (E) c) <= 0)
                break;
            // 用c替换
            queue[k] = c;
            k = child;
        }
        // 
        queue[k] = x;
    }
    // 同上,只是比较的时候使用的是元素的compareTo方法
    private void siftDownComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>)x;
        int half = size >>> 1;        // 如果是非叶子节点则继续循环
        while (k < half) {
            int child = (k << 1) + 1;
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
                c = queue[child = right];
            if (key.compareTo((E) c) <= 0)
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = key;
    }

  这里可能一眼看过去有点难以理解,嗯,那就多看两眼吧。

  siftDown方法是这里面比较重要的方法之一,有两个参数,一个是序号k,另一个是元素x,这个方法的作用,便是把x从k开始往下调整,使得在节点k在其子树的每相邻层中,父节点都小于其子节点。所以heapify的作用就比较明显了,从最后一个非叶子节点开始,从下往上依次调整其子树,使得最终得到的树里,根节点是最小的。这里要先理解一下为什么heapify中i的初始值要设置为(size >>> 1) - 1。因为这是最后一个非叶子节点的位置,不信的话可以随便画几个图验证一下,至于在siftDownUsingComparator方法中,int half = size >>> 1;这里half则是第一个叶子节点的位置,小于这个序号的节点都是非叶子节点,这里也可以画图验证,当然,注释中我已经做了解释。

  说了这么多,也许还是不太明白,以集合{14,7,12,6,9,4,17,23,10,15,3}为例画个图吧:

  嗯,这样最小的元素就被顶上去了,有没有觉得有点像冒泡排序,嗯,确实有点像。

  siftDown说完了,再来看一眼siftUp吧,这里操作是十分类似的。

    private void siftUp(int k, E x) {
        if (comparator != null)
            siftUpUsingComparator(k, x);
        else
            siftUpComparable(k, x);
    }

    @SuppressWarnings("unchecked")
    private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }

    @SuppressWarnings("unchecked")
    private void siftUpUsingComparator(int k, E x) {
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (comparator.compare(x, (E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = x;
    }

  嗯,相信如果理解了siftDown的话,这里应该就不难理解了吧,如果还有疑问,欢迎留言。

  再来看看几个常用的方法:

    public boolean add(E e) {
        return offer(e);
    }

    public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        modCount++;
        int i = size;
        if (i >= queue.length)
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else
            siftUp(i, e);
        return true;
    }
    // 扩容函数
    private void grow(int minCapacity) {
        int oldCapacity = queue.length;
        // 如果当前容量比较小(小于64)的话进行双倍扩容,否则扩容50%
        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                                         (oldCapacity + 2) :
                                         (oldCapacity >> 1));
        // 如果发现扩容后溢出了,则进行调整
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        queue = Arrays.copyOf(queue, newCapacity);
    }
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

    public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

    private int indexOf(Object o) {
        if (o != null) {
            // 查找时需要进行全局遍历,比搜索二叉树的查找效率要低
            for (int i = 0; i < size; i++)
                if (o.equals(queue[i]))
                    return i;
        }
        return -1;
    }

    public E poll() {
        if (size == 0)
            return null;
        int s = --size;
        modCount++;
        E result = (E) queue[0];
        E x = (E) queue[s];
        queue[s] = null;
        if (s != 0)
            siftDown(0, x);
        return result;
    }

  这里对照一下最开始说的小顶堆的插入和移除就能比较好的理解了。

  最后源码中还有一个remove方法,需要稍微说明一下:

    // 这里不是移除堆顶元素,而是移除指定元素
    public boolean remove(Object o) {
        // 先找到该元素的位置
        int i = indexOf(o);
        if (i == -1)
            return false;
        else {
            removeAt(i);
            return true;
        }
    }
    // 移除指定序号的元素
    private E removeAt(int i) {
        // assert i >= 0 && i < size;
        modCount++;
        // s为最后一个元素的序号
        int s = --size;
        if (s == i) 
            queue[i] = null;
        else {
            // moved记录最后一个元素的值
            E moved = (E) queue[s];
            queue[s] = null;
            // 用最后一个元素代替要移除的元素,并向下进行调整
            siftDown(i, moved);
            // 如果向下调整后发现moved还在该位置,则再向上进行调整
            if (queue[i] == moved) {
                siftUp(i, moved);
                if (queue[i] != moved)
                    return moved;
            }
        }
        return null;
    }

  当移除的不是堆顶元素的时候,同样先用最后一个元素代替,然后先从被移除的位置开始向下调整,如果发现没有改动,则再向上调整。

四、PriorityQueue的应用场景

  最后,来聊聊PriorityQueue的应用场景,由于内部是用数组实现的小顶堆,所以堆适用的场景它都适用,比如典型的从n个元素中取出最小(最大)的前k个,这样的场景适用PriorityQueue就能以比较小的空间代价和还算ok的时间代价进行实现,另外,优先级队列适用场景的特点便是需要动态插入元素,并且元素有优先级,需要根据一定的规则进行优先级排序。

  下面以从10000个整数中取出最大的10个整数为例进行介绍。

public class Test {
    public static void main(String[] args){
        ArrayList<Integer> integers = new ArrayList<>(10000);
        Random random = new Random();
        for (int i = 0; i < 10000; i++) {
            Integer integer = random.nextInt();
            if (!integers.contains(integer))
                integers.add(integer);
        }
        Integer[] largest = getLargest10(integers);
        for (Integer i : largest){
            System.out.print(i + " ");
        }

        System.out.println();
        
        // 验证一下是否是最大的前10个
        integers.sort(Comparator.comparingInt(Integer::intValue));
        ArrayList<Integer> largest2 = new ArrayList<>(10);
        for (int i = integers.size() - 1; i >= integers.size() - 10; i--){
            largest2.add(integers.get(i));
        }

        // 在largest数组中查找
        System.out.println(Arrays.asList(largest).containsAll(largest2)); 
    }

    public static Integer[] getLargest10(ArrayList<Integer> integers){
        PriorityQueue<Integer> queue = new PriorityQueue<>(10);
        for (Integer integer : integers){
            queue.add(integer);
            if (queue.size() > 10){
                queue.poll();
            }
        }
        return queue.toArray(new Integer[10]);
    }
}

  输出如下,由于是取的随机数,所以每个人的输出都会不一样。

2143974860 2143998490 2144350843 2145111627 2144739333 2145674658 2144667271 2145543903 2147209906 2145466260 
true

  最后,我们来回答一下开头的问题:

  1、PriorityQueue是什么?PriorityQueue是优先级队列,取出元素时会根据元素的优先级进行排序。

  2、PriorityQueue的内部结构是什么?PriorityQueue内部是一个用数组实现的小顶堆。

  3、二叉堆、大顶堆、小顶堆分别是什么?有什么特性?二叉堆是完全二叉树或者近完全二叉树,大顶堆即所有父节点大于子节点,小顶堆即所有父节点小于子节点。

  4、小顶堆是如何实现的,如何用数组表示?小顶堆是用二叉树实现的,用数组表示时,父节点n的左孩子为2n+1,右孩子的序号为2n+2。

  5、小顶堆的删除、插入操作是如何进行的?小顶堆删除堆顶元素后用最后一个元素替补,然后从上往下调整,插入一个元素时,先放到最后的位置,然后再从下往上调整。

  6、PriorityQueue的源码解析。如上。

  7、PriorityQueue的应用场景。适用于需要动态插入元素,且元素有优先级顺序的场景。

  到此,本篇圆满结束。如果觉得还不错的话,记得动动小手点个赞,也欢迎关注博主,你们的支持是我写出更好博客的动力。

  有兴趣对Java进行更深入学习和交流的小伙伴,欢迎加入QQ群交流:529253292

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏JMCui

ArrayList 和 LinkedList的执行效率比较

一、概念:     一般我们都知道ArrayList* 由一个数组后推得到的 List。作为一个常规用途的对象容器使用,用于替换原先的 Vector。允许我们快...

3659
来自专栏java达人

数字的陷阱

Java中对数字的处理,如四舍五入,如加减乘除,貌似是一个很基础很简单的知识点,但是如果你没有对他进行充分了解,很容易掉进它的陷阱里。 1、浮点数运算 先来看一...

1888
来自专栏编程札记

java之hashtable和hashmap

1715
来自专栏Golang语言社区

golang使用sort接口实现排序示例

今天看见群里再讨论排序的sort.Interface的实现,有童鞋一直搞不定,我就上手了一下,哦耶搞定了,代码放在这里. 其实很简单sort.Interface...

3737
来自专栏一个会写诗的程序员的博客

《Kotlin极简教程》第五章 Kotlin面向对象编程(OOP)一个OOP版本的HelloWorld构造函数传参Data Class定义接口&实现之写pojo bean定一个Rectangle对象封

We frequently create a class to do nothing but hold data. In such a class some s...

1814
来自专栏ml

hihocoder-平衡树·SBT

 http://hihocoder.com/problemset/problem/1337 #1337 : 平衡树·SBT 时间限制:10000ms 单点时限:...

2685
来自专栏拭心的安卓进阶之路

Java 集合深入理解(13):Stack 栈

今天心情不错,再来一篇 Stack ! 数据结构中的 栈 数据结构中,栈是一种线性数据结构,遵从 LIFO(后进先出)的操作顺序,所有操作都是在顶部进行 ...

20910
来自专栏null的专栏

剑指Offer——编程题的Java实现

声明:我写这个的意图是我在看书的过程中,就我掌握的内容做一个笔记,没有抄袭的意图。再次说明一下,我找工作的过程中并不顺利,没有像那些牛人们拿到一大把的Offer...

7533
来自专栏恰同学骚年

数据结构基础温故-1.线性表(中)

在上一篇中,我们学习了线性表最基础的表现形式-顺序表,但是其存在一定缺点:必须占用一整块事先分配好的存储空间,在插入和删除操作上需要移动大量元素(即操作不方便)...

982
来自专栏有趣的Python

8-玩转数据结构-堆

前面我们介绍了二分搜索树,以及通过二分搜索树实现的集合和映射这两个更加高层次的数据结构。

3111

扫码关注云+社区