专栏首页简书专栏基于xgboost的波士顿房价预测kaggle实战

基于xgboost的波士顿房价预测kaggle实战

2018年8月24日笔记 这是作者在波士顿房价预测项目的第3篇文章,在查看此篇文章之前,请确保已经阅读前2篇文章。 第2篇文章链接:https://www.jianshu.com/p/f34f22258a0a

0.打开jupyter notebook

不知道怎么打开jupyter notebook的朋友请查看我的入门指南文章:https://www.jianshu.com/p/bb0812a70246

1.准备数据

kaggle网站波士顿房价项目链接:https://www.kaggle.com/c/boston-housing 网页内容如下图所示:

image.png

查看项目评分标准,如下图所示:

image.png

从上图我们可以看出,该项目使用RMSE指标评估。 RMSE是root mean square error的简写,中文叫做均方根误差。 上图中的公式有错误,正确应该如下图所示:

image.png

2.作者的最高分

波士顿房价预测项目是2016年的项目,现在已经结束。 所以读者可以先熟悉提交答案的流程,作者提供自己的最高分文件。 提交文件下载链接: https://pan.baidu.com/s/1DxSEuysjOLCVuNlnw41-oQ 密码: b8jm 提交结果如下图所示:

image.png

从上图的结果可以看到,作者的最高分有3.02分,可以排到第5名。 后面的章节讲述提升模型回归效果,即降低RMSE的过程。

3.下载数据集

如下图所示,下载红色箭头标示的3个文件。 下载完成后,就可以开始编程。

image.png

4.加载数据集

train.csv文件中的表格有15个字段,第1个字段是ID,最后1个字段是预测目标值。 用df.iloc[:,1:-1]取除了第1个字段和最后1个字段的其他字段。

import pandas as pd

def dataProcessing(df):
    field_cut = {
    'crim' : [0,10,20, 100],
    'zn' : [-1, 5, 18, 20, 40, 80, 86, 100], 
    'indus' : [-1, 7, 15, 23, 40],
    'nox' : [0, 0.51, 0.6, 0.7, 0.8, 1],
    'rm' : [0, 4, 5, 6, 7, 8, 9],
    'age' : [0, 60, 80, 100],
    'dis' : [0, 2, 6, 14],
    'rad' : [0, 5, 10, 25],
    'tax' : [0, 200, 400, 500, 800],
    'ptratio' : [0, 14, 20, 23],
    'black' : [0, 100, 350, 450],
    'lstat' : [0, 5, 10, 20, 40]
    }
    cut_df = pd.DataFrame()
    for field in field_cut.keys():
        cut_series = pd.cut(df[field], field_cut[field], right=True)
        onehot_df = pd.get_dummies(cut_series, prefix=field)
        cut_df = pd.concat([cut_df, onehot_df], axis=1)
    new_df = pd.concat([df, cut_df], axis=1)
    return new_df

df = pd.read_csv('train.csv')
field_df = df.iloc[:,1:-1]
feature_df = dataProcessing(field_df)

根据网上的资料显示,有部分异常值的预测目标值为50。 清除异常值,代码如下:

X = feature_df
y = df['medv'].values
print(X.shape)
X = X[y!=50]
y = y[y!=50]
print(X.shape)

上面一段代码的运行结果如下:

(333, 61) (322, 61)

5.模型训练

from xgboost import XGBRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit


xgb_model = XGBRegressor(nthread=7)
cv_split = ShuffleSplit(n_splits=6, train_size=0.7, test_size=0.2)
grid_params = dict(
    max_depth = [4, 5, 6, 7],
    learning_rate = np.linspace(0.03, 0.3, 10),
    n_estimators = [100, 200]
)
grid = GridSearchCV(xgb_model, grid_params, cv=cv_split, scoring='neg_mean_squared_error')
grid.fit(X, y)

查看模型的最优参数和最优rmse指标,代码如下:

print(grid_model.best_params_)
print('rmse:', (-grid_model.best_score_) ** 0.5)

上面一段代码的运行结果如下:

{'learning_rate': 0.03, 'max_depth': 6, 'n_estimators': 200} rmse: 2.885408101511587

利用训练好的结果,对测试集做回归预测,代码如下:

predict_df = pd.read_csv('test.csv')
predict_X = dataProcessing(predict_df.iloc[:,1:]).values
predict_y = grid_model.predict(predict_X)
save_df = pd.DataFrame({
    'ID' : predict_df.ID,
    'medv' : predict_y
})
save_df.to_csv('xgb_boston_submission1.csv', index=False)

6.提交作答文件

点击下图红色箭头标示处,界面如下图所示。 分为2步:1.上传作答文件;2.对此次作答做简单的描述。

image.png

作者的作答文件命名为xgb_boston_submission1.csv,如下图所示。 重新运行的提交分数为3.10,分数略有下降,但是仍能进入前5。

image.png

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 房价数据转换和清洗

    下载链接:https://pan.baidu.com/s/16D5hw-XBEQnwtsf4fDJ8xw 密码:e1fg

    潇洒坤
  • 房价数据转换和清洗2

    下载链接:https://pan.baidu.com/s/16D5hw-XBEQnwtsf4fDJ8xw 密码:e1fg

    潇洒坤
  • 基于xgboost的风力发电机叶片结冰分类预测

    xgboost中文叫做极致梯度提升模型,官方文档链接:https://xgboost.readthedocs.io/en/latest/tutorials/mo...

    潇洒坤
  • 50道练习实践学习Pandas!

    原文地址:https://www.kesci.com/home/project/5ddc974ef41512002cec1dca

    Datawhale
  • Python中字段抽取、字段拆分、记录抽取

    1、字段抽取 字段抽取是根据已知列数据的开始和结束位置,抽取出新的列 字段截取函数:slice(start,stop) 注意:和数据结构的访问方式一样,开始位置...

    Erin
  • 13个Pandas奇技淫巧

    先按Mt列进行分组,然后对分组之后的数据框使用idxmax函数取出Count最大值所在的列,再用iloc位置索引将行取出。有重复值的情况

    叫我龙总
  • 13个Pandas实用技巧,有点香 !

    归纳整理了一些工作中常用到的pandas使用技巧,方便更高效地实现数据分析。文章很短,不用收藏就能Get~

    用户2769421
  • pandas数据清洗,排序,索引设置,数据选取

    df.isnull() df的空值为True df.notnull() df的非空值为True

    李智
  • 快速介绍Python数据分析库pandas的基础知识和代码示例

    “软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重·要的知识点。”

    deephub
  • 妈妈再也不用担心我忘记pandas操作了

    pandas的操作上千种,但对于数据分析的使用掌握常用的操作就可以应付了,更多的操作可以参考pandas官网。

    用户2769421

扫码关注云+社区

领取腾讯云代金券