前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Cocos2d-x游戏开发】细数Cocos2d-x开发中那些常用的C++11知识

【Cocos2d-x游戏开发】细数Cocos2d-x开发中那些常用的C++11知识

作者头像
马三小伙儿
发布2018-09-12 14:58:42
4620
发布2018-09-12 14:58:42
举报

  自从Cocos2d-x3.0开始,Cocos2dx就正式的使用了C++11标准.C++11简洁方便的特性使程序的可拓展性和可维护性大大提高,也提高了代码的书写速度。

  下面我们就来一起学习一下Cocos2d-x开发中那些不得不了解的C++11知识。

 1.初始化列表

POD结构或者数组根据成员在结构内定义的顺序,可以使用初始化列表来进行初始化以简化代码。

struct StructA{
    int a;
    int b;
};

StructA sa={1,2};

  在C++03中,非POD结构的类或者STL容器并不支持这种简便的写法,而C++11提供了强大的支持。使用std::initializer_list可以让类和普通函数使用初始化列表,并且STL容器也是可以使用初始化列表,代码如下:

//类使用初始化列表
class ClassA{
public:
    ClassA(std::initializer_list<int>list){}
};

ClassA a = { 1, 2, 3 };

/*注意!使用std::initializer_list需要先include <initializer_list>头文件*/
//函数使用初始化列表
void func(std::initializer_list<float>list){
    /*Function Body*/
}

func({1.6f,2.8f});

/*注意!使用std::initializer_list需要先include <initializer_list>头文件*/
//STL标准容器使用初始化列表
vector<string> s = {"hello","C++","11"};

  可以看到在引入了std::initializer_list特性之后,初始化变量的工作简洁了许多,非常方便。

 2.自动类型推导

  类型推导可以在编译的时候自动来识别对象的类型,从而简化代码,更好的使用模版编程,使用auto关键字即可自动推导类型明确的变量,例如:

    /*自动类型推导*/
    vector<int> v;
    vector<int>::iterator it=v.begin();        //使用类型推导前
    auto it2 = v.begin();                    //使用类型推导后

  decltype也可以根据已有的对象自动识别类型,但是它和auto的不同之处是:auto是自动推导出表达式右边的类型,而decltype是自动推导出任意一个变量的类型,并且可以用该类型来定义变量,说起来比较难理解,看下面的代码就一目了然了:

    int num;
    decltype(num) b = 5;

 3.自动范围推导

在C++11以前,写一个循环语句通常是这样的:

    for (int i = 0; i < 10; i++){            //使用自动范围推导前
        cout << i << endl;
    }

  而在C++11中,for语句新增了范围迭代的写法,该写法可以简化for循环的代码,“:”符号左边是要编历的元素类型,可以是引用或者const引用类型;而“:”右边是要编历的容器可以是数组或者STL容器等,代码如下:

    int arr []= { 1, 2, 3, 4, 5 };      //使用自动范围推导后
    for (int &i : arr){
        cout << i << endl;
    }

 4.智能指针和空指针

  智能指针是一个类而并非是普通的指针,shared_ptr是一引用计数指针,一个shared_ptr只有在已经没有任何其他shared_ptr指向其原本所指向的对象时,才会销毁该对象。

  除了shared_ptr之外,还有weak_ptr,但是weak_ptr并不拥有其所指向的对象,因此不影响该对象的销毁与否,也不能对weak_ptr解引用,只能判断该指针是否已经被销毁。下面举个例子说明一下shared_ptr:

    /*智能指针和空指针*/
    //智能指针只能被智能指针赋值,不能用shared_ptr<int> pq= new int;
    shared_ptr<int> p1(new int);
    //用{ }进入一个新的作用域
    {
        //新的智能指针指向p1,这是相当于对int内存块的一次retain
        shared_ptr<int> p2 = p1;
        *p2 = 123;
        //p2被销毁,相当于对int内存块的一次release,但是由于p1还指向该内存,引用计数器不为0,因此不会释放
    }

    return 0;
    //p1也被销毁,此时引用计数为0,int所占用的内存被自动回收

    /*注意!使用shared_ptr需要include <memory>*/

  如果将share_ptr定义为类的成员变量,那么此智能指针的retain引用会在该对象被释放的时候才释放。

  空指针nullptr的存在是为了解决NULL的二义性问题,因为NULL也可以代表0,nullptr的类型为nullptr_t,能隐式转换为任何指针或者是成员指针的类型,也能和它们进行相等或者不等的比较。而nullptr不能隐式转换为整数,也不能和整数做比较。

    void foo(char *);
    void foo(int);
    foo(NULL);        //调用的是void foo(int);
    foo(nullptr);    void foo(char *);

5.Lambda特性

lambda表达式是一个非常好的新特性,当你需要在程序中添加一个新的临时函数时,直接使用Lambda函数,会让你感觉到原来写程序还可以这么爽~(类似于Java中的 匿名内部类)。lambda的写法如下:

[函数外部对象参数] (函数参数) -> 返回值类型{ 函数体}

  (1)[ ]中的函数外部对象参数,允许在函数体内直接调用函数外部的参数;

  (2)( )中的参数,同正常函数的参数没有什么差异,是每次函数调用时传入的变量;

  (3)->后面跟着函数返回值的类型;

  (4){ }里面可以编写逻辑函数,并使用[ ]和( )传入的参数

  定义在lambda函数相同作用域的参数引用也可以被使用,这种参数集合一般被称为闭包,[ ]中可以填写下面的几种类型的参数,将定义lambda函数作用域内的变量传入函数体中。

  1.[ ]可以没有任何参数,这种情况下不传入外部参数

  2.[a,&b]传入变量a的值以及变量b的引用

  3.[&]以引用的方式传入所有的变量

  4.[=]以传值的方式传入所有的变量,值不可以被修改

  5.[&,a]除了a用传值的方式,其他变量都已引用的方式传入

  6.[=,&a]除了a用引用的方式传入,其他变量都以传值的方式传入

  下面让我们通过一个例子来了解一下,当在lambda中使用了“=”传入的参数,且对引用参数或者外部参数进行赋值操作之后,会产生意想不到的结果,并且还需注意在使用“&”时需要注意引用对象的生命周期。

    /*Lambda表达式*/
    int b, c, d;
    auto func0 = [&]()->void {b = 1; c = 2; d = 3; };
    auto func1 = [=]()->int {return 2 * 3; };
    auto func2 = [=, &b, &c]()->void {++b; c += d + b; };
    auto func3 = [=]()->int {return b + d; };

    func0();    //b,c,d分别为1,2,3
    c=func1();    //c=6
    func2();    //b=2;c=858993456,d=6;
    b = func3();//b=1717986916
    return 0;

  当Lambda被定义在类的成员函数中时,Lambda可以调用该类的private函数;当Lambda调用该类的成员函数时,操作成员变量或者其他成员函数时,需要将this传入,=和&会传入this。

  使用std::function可以存储Lambda函数,比如可以用function<void()>来存储func0,用function<int()>来存储func1,带有参数的函数可以直接在()内输入参数类型,在使用function时要包含头文件functional。

    #include <functional>
    function<void()> f1 = func0;
    function<int()>f2 = func1;    

  function还可以用于存放普通函数,静态函数和类的公有成员函数,前两者和lambda的用法一样,直接将函数名赋值给function对象即可(无法识别重载的函数),但类的成员函数需要使用bind来绑定:

    ClassA *obj = new ClassA();
    function<void(int)> f2 = bind(&ClassA::memberFunc1,obj,std::placeholders::_1);
    function<void(int, char)>f3 = bind(&ClassA::memberFunc2,obj,std::placeholders::_2);

  使用bind函数绑定成员函数和对象指针,使用std::placeholders占位符来表示函数的参数数量,其后缀依次从1~N。

6.显式虚函数重载

override可以确保在重写父类的虚函数,调整父类的虚函数时(改名字或者参数),不会忘记调整子类的虚函数。在编译时,编译器会为标记为override的虚函数检查其父类是否有该虚函数:

class B{
public:
    virtual void virtuaalFunc(int);
};

class C{
public:
    virtual void virtuaalFunc(int) override;    //显示重写父类虚函数
    virtual void virtuaalFunc(char) override;    //错误
};

  final可以保证子类不能重写函数,不能具有相同签名的函数,或者类不能被继承。(类似于Java中final用法)override和final并不是C++11的关键字,只是在特定的位置才有特殊的含义,在其他地方仍然是当作变量来用的。

作者:马三小伙儿 出处:http://www.cnblogs.com/msxh/p/5869992.html 请尊重别人的劳动成果,让分享成为一种美德,欢迎转载。另外,文章在表述和代码方面如有不妥之处,欢迎 批评指正。留下你的脚印,欢迎评论!

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2016-09-17 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档