前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【TensorFlow篇】--DNN初始和应用

【TensorFlow篇】--DNN初始和应用

作者头像
LhWorld哥陪你聊算法
发布2018-09-13 15:02:38
7560
发布2018-09-13 15:02:38
举报

一、前述

ANN人工神经网络有两个或两个以上隐藏层,称为DNN

只有一个隐藏层是多层感知机

没有隐藏层是感知机

二、反向传播应用举例

举例:

正向传播,反向传播是一次迭代,

正向传播:在开始的每一层上都有一个参数值w,初始的时候是随机的,前向带入的是每一个样本值。

反向传播:然后反过来求所有的梯度值。如果是BGD则再根据公式wt=wt-1-ag进行调整所有w值。

然后再正向传播,迭代,以此类推。

softmax通常用于最后一层的激活函数

前面层用relu函数

三、激活函数之Relu

公式:

解释:

Rectified Linear Units ReLU计算线性函数为非线性,如果大于0就是结果,否则就是0 生物神经元的反应看起来其实很像Sigmoid激活函数,所有专家在Sigmoid上卡了很长时间,但是后 来发现ReLU才更适合人工神经网络,这是一个模拟生物的误解

如果w为0,反过来梯度下降求导的时候每根线上的梯度都一样。

代码:

代码语言:javascript
复制
import tensorflow as tf


def relu(X):
    w_shape = (int(X.get_shape()[1]), 1)
    w = tf.Variable(tf.random_uniform(w_shape), name='weights')
    b = tf.Variable(0.0, name='bias')
    z = tf.add(tf.matmul(X, w), b, name='z')
    return tf.maximum(z, 0., name='relu')


n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name='X')
relus = [relu(X) for i in range(5)]#list生成器
output = tf.add_n(relus, name='output')#将集合中的元素加和在一起

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    result = output.eval(feed_dict={X: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]})#把里面placehoder的值传进来
    print(result)

 四、激活函数和导数

 五、DNN代码

代码语言:javascript
复制
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
from tensorflow.contrib.layers import fully_connected


# 构建图阶段
n_inputs = 28*28#输入节点
n_hidden1 = 300#第一个隐藏层300个节点 对第一个隐藏层前面有784*300跟线去算
n_hidden2 = 100#第二个隐藏层100个节点 对第二个隐藏层300*300根线
n_outputs = 10#输出节点

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name='X')
y = tf.placeholder(tf.int64, shape=(None), name='y')

#自己手写的实现逻辑
# 构建神经网络层,我们这里两个隐藏层,基本一样,除了输入inputs到每个神经元的连接不同
# 和神经元个数不同
# 输出层也非常相似,只是激活函数从ReLU变成了Softmax而已
# def neuron_layer(X, n_neurons, name, activation=None):# X是输入,n_neurons是这一层神经元个数,当前隐藏层名称,最后一个参数是加不加激活函数
#     # 包含所有计算节点对于这一层,name_scope可写可不写
#     with tf.name_scope(name):#with让代码看起来更加优雅一些
#         # 取输入矩阵的维度作为层的输入连接个数
#         n_inputs = int(X.get_shape()[1])
#         stddev = 2 / np.sqrt(n_inputs)#求标准方差
#         # 这层里面的w可以看成是二维数组,每个神经元对于一组w参数
#         # truncated normal distribution(调整后的正态分布) 比 regular normal distribution(正态分布)的值小
#         # 不会出现任何大的权重值,确保慢慢的稳健的训练
#         # 使用这种标准方差会让收敛快
#         # w参数需要随机,不能为0,否则输出为0,最后调整都是一个幅度没意义
#         init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)#把初始参数随机出来,比较小,不会出现大的权重值
#         w = tf.Variable(init, name='weights')
#         b = tf.Variable(tf.zeros([n_neurons]), name='biases')#b可以全为0
#         # 向量表达的使用比一条一条加和要高效
#         z = tf.matmul(X, w) + b
#         if activation == "relu":
#             return tf.nn.relu(z)
#         else:
#             return z
#自己手写的实现逻辑
'''
with tf.name_scope("dnn"):
    hidden1 = neuron_layer(X, n_hidden1, "hidden1", activation="relu")
    hidden2 = neuron_layer(hidden1, n_hidden2, "hidden2", activation="relu")
    # 进入到softmax之前的结果
    logits = neuron_layer(hidden2, n_outputs, "outputs")
'''
#用Tensorflow封装的函数
with tf.name_scope("dnn"):
    # tensorflow使用这个函数帮助我们使用合适的初始化w和b的策略,默认使用ReLU激活函数
    hidden1 = fully_connected(X, n_hidden1, scope="hidden1")#构建第一层隐藏层 全连接
    hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")#构建第二层隐藏层 全连接
    logits = fully_connected(hidden2, n_outputs, scope="outputs", activation_fn=None)#构建输出层 #注意输出层激活函数不需要

with tf.name_scope("loss"):
    # 定义交叉熵损失函数,并且求个样本平均
    # 函数等价于先使用softmax损失函数,再接着计算交叉熵,并且更有效率
    # 类似的softmax_cross_entropy_with_logits只会给one-hot编码,我们使用的会给0-9分类号
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)#封装好了损失函数
    #把真实的Y值做onehot编码
    loss = tf.reduce_mean(xentropy, name="loss")#求平均

learning_rate = 0.01

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)#创建梯度下降的优化器
    training_op = optimizer.minimize(loss)#最小化损失

with tf.name_scope("eval"):#评估
    # 获取logits里面最大的那1位和y比较类别好是否相同,返回True或者False一组值
    correct = tf.nn.in_top_k(logits, y, 1)#logits返回是类别号 y也是类别号
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))#转成1.0 0.0

init = tf.global_variables_initializer()
saver = tf.train.Saver()

# 计算图阶段
mnist = input_data.read_data_sets("MNIST_data_bak/")
n_epochs = 400 #运行400次
batch_size = 50 #每一批次运行50个

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for iterationo in range(mnist.train.num_examples//batch_size):#总共多少条/批次大小
            X_batch, y_batch = mnist.train.next_batch(batch_size)#每次传取一小批次数据
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})#传递参数
        acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})#每运行一次 看训练集准确率
        acc_test = accuracy.eval(feed_dict={X: mnist.test.images,#每运行一次 看测试集准确率
                                            y: mnist.test.labels})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

    save_path = saver.save(sess, "./my_dnn_model_final.ckpt")

# 使用模型预测
with tf.Session as sess:
    saver.restore(sess, "./my_dnn_model_final.ckpt")
    X_new_scaled = [...]
    Z = logits.eval(feed_dict={X: X_new_scaled})
    y_pred = np.argmax(Z, axis=1)  # 查看最大的类别是哪个
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-03-28 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档