前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Caffe篇】--Caffe从入门到初始及各层介绍

【Caffe篇】--Caffe从入门到初始及各层介绍

作者头像
LhWorld哥陪你聊算法
发布2018-09-13 15:13:13
1K0
发布2018-09-13 15:13:13
举报

一、前述

Caffe,全称Convolutional Architecture for Fast Feature Embedding。是一种常用的深度学习框架,主要应用在视频、图像处理方面的应用上。caffe是一个清晰,可读性高,快速的深度学习框架。作者是贾扬清,加州大学伯克利的ph.D,现就职于Facebook。caffe的官网是http://caffe.berkeleyvision.org/。

 二、具体

1、输入层

代码语言:javascript
复制
layer {
  name: "cifar"
  type: "Data"
  top: "data"  #一般用bottom表示输入,top表示输出,多个top代表有多个输出
  top: "label"
  include {
    phase: TRAIN #训练网络分为训练阶段和自测试阶段,如果没写include则表示该层即在测试中,又在训练中
  }
  transform_param {
    mean_file: "examples/cifar10/mean.binaryproto" #用一个配置文件来进行均值的操作
    transform_param {
    scale: 0.00390625
    mirror: 1  # 1表示开启镜像,0表示关闭,也可用ture和false来表示
    # 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
    crop_size: 227
  }
  }
  data_param {
    source: "examples/cifar10/cifar10_train_lmdb" #数据库来源
    batch_size: 64 #每次批处理的个数
    backend: LMDB #选用数据的名称
  }
}

### 使用LMDB源
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

###使用HDF5数据源
layer {
  name: "data"
  type: "HDF5Data"
  top: "data"
  top: "label"
  hdf5_data_param {
    source: "examples/hdf5_classification/data/train.txt"
    batch_size: 10
  }
}

###数据直接来源与图片
#/path/to/images/img3423.jpg 2  
#/path/to/images/img3424.jpg 13  
#/path/to/images/img3425.jpg 8

layer {
  name: "data"
  type: "ImageData" #类型
  top: "data"
  top: "label"
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  image_data_param {
    source: "examples/_temp/file_list.txt"
    batch_size: 50
    new_height: 256 #如果设置就对图片进行resize操作
    new_width: 256
  }
}

2、卷积层

代码语言:javascript
复制
layer {
  name: "conv1" #定义一个名字 必须指定的
  type: "Convolution"
  bottom: "data"#前面连接的层 data层
  top: "conv1"#输出是卷积层
  param {
    lr_mult: 1  #lr_mult: #当前层的学习率 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20 #卷积核(filter)的个数等于特征图的个数
    kernel_size: 5 #卷积核的大小 5*5*d  中的d是上一层的深度 
    stride: 1 #卷积核的步长,默认为1 
    pad: 0 #扩充边缘,默认为0,不扩充
    weight_filler {
      type: "xavier" #权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
    }
    bias_filler {
      type: "constant" #偏置项的初始化。一般设置为"constant",值全为0
    }
  }
}

输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;

结论:

假设输入时h*w k是kernel_size p 是padding s是stride则
特征图 的输出的h是多大的 (h-k+2p)/s+1
             w是(w-k+2p)/s+1

3、池化层

代码语言:javascript
复制
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX #池化方法,默认为MAX。目前可用的方法有MAX, AVE
    kernel_size: 3 #池化的核大小
    stride: 2 #池化的步长,默认为1。一般我们设置为2,即不重叠。
  }
}

#pooling层的运算方法基本是和卷积层是一样的。

4、激活函数层

代码语言:javascript
复制
#在激活层中,对输入数据进行激活操作,是逐元素进行运算的,在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

###Sigmoid


layer {
  name: "test"
  bottom: "conv"
  top: "test"
  type: "Sigmoid"
}

#ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。标准的ReLU函数为max(x, 0),当x>0时,输出x; 当x<=0时,输出0
f(x)=max(x,0)



layer {
  name: "relu1"
  type: "ReLU"
  bottom: "pool1"
  top: "pool1"
}

 5、全连接层

代码语言:javascript
复制
#全连接层,输出的是一个简单向量  参数跟卷积层一样
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
#测试的时候输入准确率
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"#两个输入一个输入是分类结果
  bottom: "label"#另一个输入是label
  top: "accuracy"
  include {
    phase: TEST
  }
}

 6、softmax_layer

代码语言:javascript
复制
#softmax-loss layer:输出loss值 对于softmax 得到损失函数 -logp p为正确的分类的概率
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip1"
  bottom: "label"
  top: "loss"
}

#softmax layer: 输出似然值  得到每一个类别的概率值
layers {
  bottom: "cls3_fc"
  top: "prob"
  name: "prob"
  type: “Softmax"
}

7、reshape层

代码语言:javascript
复制
#在不改变数据的情况下,改变输入的维度

layer {
    name: "reshape"
    type: "Reshape"
    bottom: "input"
    top: "output"
    reshape_param {
      shape {
        dim: 0  # copy the dimension from below
        dim: 2
        dim: 3
        dim: -1 # infer it from the other dimensions
      }
    }
  }

有一个可选的参数组shape, 用于指定blob数据的各维的值(blob是一个四维的数据:n*c*w*h)。

dim:0  表示维度不变,即输入和输出是相同的维度。

dim:2 或 dim:3 将原来的维度变成2或3

dim:-1 表示由系统自动计算维度。数据的总量不变,系统会根据blob数据的其它三维来自动计算当前维的维度值 。

假设原数据为:32*3*28*28, 表示32张3通道的28*28的彩色图片
    shape {
    dim: 0 #表示不变
    dim: 0
    dim: 14
    dim: -1 #表示自动推断
    }
输出数据为:32*3*14*56

#Dropout是一个防止过拟合的层
#只需要设置一个dropout_ratio就可以了。
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7-conv"
  top: "fc7-conv"
  dropout_param {
    dropout_ratio: 0.5
  }
}
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-06-30 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档