前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【深度学习】--GAN从入门到初始

【深度学习】--GAN从入门到初始

作者头像
LhWorld哥陪你聊算法
发布2018-09-13 15:20:59
5620
发布2018-09-13 15:20:59
举报

一、前述

GAN,生成对抗网络,在2016年基本火爆深度学习,所有有必要学习一下。生成对抗网络直观的应用可以帮我们生成数据,图片。

二、具体

1、生活案例

比如假设真钱 r  

坏人定义为G  我们通过 G 给定一个噪音X 通过学习一组参数w 生成一个G(x),转换成一个真实的分布。 这就是生成,相当于造假钱。

警察定义为D 将G(x)和真钱r 分别输入给判别网络,能判别出真假,真钱判别为0,假钱判别为1 。这就是判别。

最后生成网络想让判别网络判别不出来什么是真实的,什么是假的。要想生成的更好,则判别的就必须更强。有些博弈的思想,只有你强了,我才更强!!。

2、数学案例

我们最后的希望。

3、损失函数

4、代码案例

 流程:

为了使判别模型更好,所以我们额外训练一个D_pre网络,使得判别模型能够判别出哪些是0,哪些是1,训练完之后会得到一组w,b参数。这样我们在真正初始化判别模型D的时候就能根据之前的D_pre来进行初始化。

 代码:

代码语言:javascript
复制
import argparse
import numpy as np
from scipy.stats import norm
import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib import animation
import seaborn as sns

sns.set(color_codes=True)  

seed = 42
np.random.seed(seed)
tf.set_random_seed(seed)


class DataDistribution(object):
    def __init__(self):
        self.mu = 4#均值
        self.sigma = 0.5#标准差

    def sample(self, N):
        samples = np.random.normal(self.mu, self.sigma, N)
        samples.sort()
        return samples


class GeneratorDistribution(object):#在生成模型额噪音点,初始化输入
    def __init__(self, range):
        self.range = range

    def sample(self, N):
        return np.linspace(-self.range, self.range, N) + \
            np.random.random(N) * 0.01


def linear(input, output_dim, scope=None, stddev=1.0):
    norm = tf.random_normal_initializer(stddev=stddev)
    const = tf.constant_initializer(0.0)
    with tf.variable_scope(scope or 'linear'):
        w = tf.get_variable('w', [input.get_shape()[1], output_dim], initializer=norm)
        b = tf.get_variable('b', [output_dim], initializer=const)
        return tf.matmul(input, w) + b


def generator(input, h_dim):
    h0 = tf.nn.softplus(linear(input, h_dim, 'g0'))#12*1
    h1 = linear(h0, 1, 'g1')
    return h1#z最后的生成模型


def discriminator(input, h_dim):
    h0 = tf.tanh(linear(input, h_dim * 2, 'd0'))#linear 控制初始化参数
    h1 = tf.tanh(linear(h0, h_dim * 2, 'd1'))   
    h2 = tf.tanh(linear(h1, h_dim * 2, scope='d2'))

    h3 = tf.sigmoid(linear(h2, 1, scope='d3'))#最终的输出值 对判别网络输出
    return h3

def optimizer(loss, var_list, initial_learning_rate):
    decay = 0.95
    num_decay_steps = 150#没迭代150次 学习率衰减一次0.95-150*0.95
    batch = tf.Variable(0)
    learning_rate = tf.train.exponential_decay(
        initial_learning_rate,
        batch,
        num_decay_steps,
        decay,
        staircase=True
    )
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(
        loss,
        global_step=batch,
        var_list=var_list
    )
    return optimizer


class GAN(object):
    def __init__(self, data, gen, num_steps, batch_size, log_every):
        self.data = data
        self.gen = gen
        self.num_steps = num_steps
        self.batch_size = batch_size
        self.log_every = log_every
        self.mlp_hidden_size = 4#隐层神经元个数
        
        self.learning_rate = 0.03#学习率

        self._create_model()

    def _create_model(self):

        with tf.variable_scope('D_pre'):#构造D_pre模型骨架,预先训练,为了去初始化真正的判别模型
            self.pre_input = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
            self.pre_labels = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
            D_pre = discriminator(self.pre_input, self.mlp_hidden_size)
            self.pre_loss = tf.reduce_mean(tf.square(D_pre - self.pre_labels))
            self.pre_opt = optimizer(self.pre_loss, None, self.learning_rate)

        # This defines the generator network - it takes samples from a noise
        # distribution as input, and passes them through an MLP.
        with tf.variable_scope('Gen'):#生成模型
            self.z = tf.placeholder(tf.float32, shape=(self.batch_size, 1))#噪音的输入
            self.G = generator(self.z, self.mlp_hidden_size)#最后的生成结果

        # The discriminator tries to tell the difference between samples from the
        # true data distribution (self.x) and the generated samples (self.z).
        #
        # Here we create two copies of the discriminator network (that share parameters),
        # as you cannot use the same network with different inputs in TensorFlow.
        with tf.variable_scope('Disc') as scope:#判别模型 不光接受真实的数据 还要接受生成模型的判别
            self.x = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
            self.D1 = discriminator(self.x, self.mlp_hidden_size)#真实的数据
            scope.reuse_variables()#变量重用
            self.D2 = discriminator(self.G, self.mlp_hidden_size)#生成的数据

        # Define the loss for discriminator and generator networks (see the original
        # paper for details), and create optimizers for both
        self.loss_d = tf.reduce_mean(-tf.log(self.D1) - tf.log(1 - self.D2))#判别网络的损失函数
        self.loss_g = tf.reduce_mean(-tf.log(self.D2))#生成网络的损失函数,希望其趋向于1

        self.d_pre_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='D_pre')
        self.d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Disc')
        self.g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Gen')

        self.opt_d = optimizer(self.loss_d, self.d_params, self.learning_rate)
        self.opt_g = optimizer(self.loss_g, self.g_params, self.learning_rate)

    def train(self):
        with tf.Session() as session:
            tf.global_variables_initializer().run()

            # pretraining discriminator
            num_pretrain_steps = 1000#迭代次数,先训练D_pre ,先让其有一个比较好的初始化参数
            for step in range(num_pretrain_steps):
                d = (np.random.random(self.batch_size) - 0.5) * 10.0
                labels = norm.pdf(d, loc=self.data.mu, scale=self.data.sigma)
                pretrain_loss, _ = session.run([self.pre_loss, self.pre_opt], {#相当于一次迭代
                    self.pre_input: np.reshape(d, (self.batch_size, 1)),
                    self.pre_labels: np.reshape(labels, (self.batch_size, 1))
                })
            self.weightsD = session.run(self.d_pre_params)#相当于拿到之前的参数
            # copy weights from pre-training over to new D network
            for i, v in enumerate(self.d_params):
                session.run(v.assign(self.weightsD[i]))#吧权重参数拷贝

            for step in range(self.num_steps):#训练真正的生成对抗网络
                # update discriminator
                x = self.data.sample(self.batch_size)#真实的数据
                z = self.gen.sample(self.batch_size)#随意的数据,噪音点
                loss_d, _ = session.run([self.loss_d, self.opt_d], {#D两种输入真实,和生成的
                    self.x: np.reshape(x, (self.batch_size, 1)),
                    self.z: np.reshape(z, (self.batch_size, 1))
                })

                # update generator
                z = self.gen.sample(self.batch_size)#G网络
                loss_g, _ = session.run([self.loss_g, self.opt_g], {
                    self.z: np.reshape(z, (self.batch_size, 1))
                })

                if step % self.log_every == 0:
                    print('{}: {}\t{}'.format(step, loss_d, loss_g))                
                if step % 100 == 0 or step==0 or step == self.num_steps -1 :
                    self._plot_distributions(session)

    def _samples(self, session, num_points=10000, num_bins=100):
        xs = np.linspace(-self.gen.range, self.gen.range, num_points)
        bins = np.linspace(-self.gen.range, self.gen.range, num_bins)

        # data distribution
        d = self.data.sample(num_points)
        pd, _ = np.histogram(d, bins=bins, density=True)

        # generated samples
        zs = np.linspace(-self.gen.range, self.gen.range, num_points)
        g = np.zeros((num_points, 1))
        for i in range(num_points // self.batch_size):
            g[self.batch_size * i:self.batch_size * (i + 1)] = session.run(self.G, {
                self.z: np.reshape(
                    zs[self.batch_size * i:self.batch_size * (i + 1)],
                    (self.batch_size, 1)
                )
            })
        pg, _ = np.histogram(g, bins=bins, density=True)

        return pd, pg

    def _plot_distributions(self, session):
        pd, pg = self._samples(session)
        p_x = np.linspace(-self.gen.range, self.gen.range, len(pd))
        f, ax = plt.subplots(1)
        ax.set_ylim(0, 1)
        plt.plot(p_x, pd, label='real data')
        plt.plot(p_x, pg, label='generated data')
        plt.title('1D Generative Adversarial Network')
        plt.xlabel('Data values')
        plt.ylabel('Probability density')
        plt.legend()
        plt.show()
def main(args):
    model = GAN(
        DataDistribution(),
        GeneratorDistribution(range=8),
        args.num_steps,
        args.batch_size,
        args.log_every,
    )
    model.train()


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--num-steps', type=int, default=1200,
                        help='the number of training steps to take')
    parser.add_argument('--batch-size', type=int, default=12,
                        help='the batch size')
    parser.add_argument('--log-every', type=int, default=10,
                        help='print loss after this many steps')
    return parser.parse_args()


if __name__ == '__main__':
    main(parse_args())

 结果:

迭代到最后时候可以看到结果越来越类似。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-07-01 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档