前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >bloomfilter的简单实现

bloomfilter的简单实现

作者头像
code4it
发布2018-09-17 14:42:45
6980
发布2018-09-17 14:42:45
举报
文章被收录于专栏:码匠的流水账码匠的流水账

布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的,可以用于检索一个元素是否在一个集合中。

原理

布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。

优点

运行快速,内存占用小。一般方法是将集合中所有元素保存起来,然后通过比较确定。链表、树、哈希表等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢。

缺点

  • 随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
  • 一般情况下不能从布隆过滤器中删除元素.

实现

代码语言:javascript
复制
public class BloomFilter {
    private final int size;
    private final int hashCount;
    private final BitSet bitSet;

    public BloomFilter(int size, int hashCount) {
        this.size = size;
        this.hashCount = hashCount;
        bitSet = new BitSet(size);
    }

    public void add(String key) {
        for (int seed = 1; seed <= hashCount; seed++) {
            int hash = Hashing.murmur3_32(seed).hashBytes(key.getBytes()).asInt();
            int index = Math.abs(hash) % size;
            bitSet.set(index);
        }
    }

    public boolean lookup(String key) {
        for (int seed = 1; seed <= hashCount; seed++) {
            int hash = Hashing.murmur3_32(seed).hashBytes(key.getBytes()).asInt();
            int index = Math.abs(hash) % size;
            if (!bitSet.get(index)) return false;
        }
        return true;
    }
}

murmur哈希算法

Austin Appleby在2008年发布了一个新的散列函数——MurmurHash。其最新版本大约是lookup3速度的2倍(大约为1 byte/cycle),它有32位和64位两个版本。32位版本只使用32位数学函数并给出一个32位的哈希值,而64位版本使用了64位的数学函数,并给出64位哈希值。根据Austin的分析,MurmurHash具有优异的性能,虽然Bob Jenkins 在《Dr. Dobbs article》杂志上声称“我预测MurmurHash比起lookup3要弱,但是我不知道具体值,因为我还没测试过它”。MurmurHash能够迅速走红得益于其出色的速度和统计特性。

guava自带的Murmur3_32HashFunction:

代码语言:javascript
复制
final class Murmur3_32HashFunction extends AbstractStreamingHashFunction implements Serializable {
  private static final int C1 = 0xcc9e2d51;
  private static final int C2 = 0x1b873593;

  private final int seed;

  Murmur3_32HashFunction(int seed) {
    this.seed = seed;
  }

  @Override
  public int bits() {
    return 32;
  }

  @Override
  public Hasher newHasher() {
    return new Murmur3_32Hasher(seed);
  }

  @Override
  public String toString() {
    return "Hashing.murmur3_32(" + seed + ")";
  }

  @Override
  public boolean equals(@Nullable Object object) {
    if (object instanceof Murmur3_32HashFunction) {
      Murmur3_32HashFunction other = (Murmur3_32HashFunction) object;
      return seed == other.seed;
    }
    return false;
  }

  @Override
  public int hashCode() {
    return getClass().hashCode() ^ seed;
  }

  @Override
  public HashCode hashInt(int input) {
    int k1 = mixK1(input);
    int h1 = mixH1(seed, k1);

    return fmix(h1, Ints.BYTES);
  }

  @Override
  public HashCode hashLong(long input) {
    int low = (int) input;
    int high = (int) (input >>> 32);

    int k1 = mixK1(low);
    int h1 = mixH1(seed, k1);

    k1 = mixK1(high);
    h1 = mixH1(h1, k1);

    return fmix(h1, Longs.BYTES);
  }

  // TODO(kak): Maybe implement #hashBytes instead?
  @Override
  public HashCode hashUnencodedChars(CharSequence input) {
    int h1 = seed;

    // step through the CharSequence 2 chars at a time
    for (int i = 1; i < input.length(); i += 2) {
      int k1 = input.charAt(i - 1) | (input.charAt(i) << 16);
      k1 = mixK1(k1);
      h1 = mixH1(h1, k1);
    }

    // deal with any remaining characters
    if ((input.length() & 1) == 1) {
      int k1 = input.charAt(input.length() - 1);
      k1 = mixK1(k1);
      h1 ^= k1;
    }

    return fmix(h1, Chars.BYTES * input.length());
  }

  private static int mixK1(int k1) {
    k1 *= C1;
    k1 = Integer.rotateLeft(k1, 15);
    k1 *= C2;
    return k1;
  }

  private static int mixH1(int h1, int k1) {
    h1 ^= k1;
    h1 = Integer.rotateLeft(h1, 13);
    h1 = h1 * 5 + 0xe6546b64;
    return h1;
  }

  // Finalization mix - force all bits of a hash block to avalanche
  private static HashCode fmix(int h1, int length) {
    h1 ^= length;
    h1 ^= h1 >>> 16;
    h1 *= 0x85ebca6b;
    h1 ^= h1 >>> 13;
    h1 *= 0xc2b2ae35;
    h1 ^= h1 >>> 16;
    return HashCode.fromInt(h1);
  }

  private static final class Murmur3_32Hasher extends AbstractStreamingHasher {
    private static final int CHUNK_SIZE = 4;
    private int h1;
    private int length;

    Murmur3_32Hasher(int seed) {
      super(CHUNK_SIZE);
      this.h1 = seed;
      this.length = 0;
    }

    @Override
    protected void process(ByteBuffer bb) {
      int k1 = Murmur3_32HashFunction.mixK1(bb.getInt());
      h1 = Murmur3_32HashFunction.mixH1(h1, k1);
      length += CHUNK_SIZE;
    }

    @Override
    protected void processRemaining(ByteBuffer bb) {
      length += bb.remaining();
      int k1 = 0;
      for (int i = 0; bb.hasRemaining(); i += 8) {
        k1 ^= toInt(bb.get()) << i;
      }
      h1 ^= Murmur3_32HashFunction.mixK1(k1);
    }

    @Override
    public HashCode makeHash() {
      return Murmur3_32HashFunction.fmix(h1, length);
    }
  }

  private static final long serialVersionUID = 0L;
}

关于参数值

哈希函数个数k、位数组大小m、加入的字符串数量n的关系:对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。比如哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889。 guava提供的BloomFilter则直接提供了false positive的参数给你配置。

代码语言:javascript
复制
public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions) {
    return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
  }

doc

  • BloomFilter——大规模数据处理利器
  • Bloom Filters by Example
  • Guava教程-BloomFilter
  • Hash 函数概览
  • 陌生但默默一统江湖的MurmurHash
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-08-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 码匠的流水账 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 原理
    • 优点
      • 缺点
      • 实现
      • murmur哈希算法
      • 关于参数值
      • doc
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档