用python简单处理图片(4):图像中的像素访问

前面的一些例子中,我们都是利用Image.open()来打开一幅图像,然后直接对这个PIL对象进行操作。如果只是简单的操作还可以,但是如果操作稍微复杂一些,就比较吃力了。因此,通常我们加载完图片后,都是把图片转换成矩阵来进行更加复杂的操作。

python中利用numpy库和scipy库来进行各种数据操作和科学计算。我们可以通过pip来直接安装这两个库

pip install numpy
pip install scipy

以后,只要是在python中进行数字图像处理,我们都需要导入这些包:

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

打开图像并转化为矩阵,并显示:

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img=np.array(Image.open('d:/lena.jpg'))  #打开图像并转化为数字矩阵
plt.figure("dog")
plt.imshow(img)
plt.axis('off')
plt.show()

调用numpy中的array()函数就可以将PIL对象转换为数组对象。

查看图片信息,可用如下的方法:

print img.shape  
print img.dtype 
print img.size 
print type(img)

如果是RGB图片,那么转换为array之后,就变成了一个rows*cols*channels的三维矩阵,因此,我们可以使用

img[i,j,k]

来访问像素值。

例1:打开图片,并随机添加一些椒盐噪声

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img=np.array(Image.open('d:/ex.jpg'))

#随机生成5000个椒盐
rows,cols,dims=img.shape
for i in range(5000):
    x=np.random.randint(0,rows)
    y=np.random.randint(0,cols)
    img[x,y,:]=255
    
plt.figure("beauty")
plt.imshow(img)
plt.axis('off')
plt.show()

例2:将lena图像二值化,像素值大于128的变为1,否则变为0

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img=np.array(Image.open('d:/pic/lena.jpg').convert('L'))

rows,cols=img.shape
for i in range(rows):
    for j in range(cols):
        if (img[i,j]<=128):
            img[i,j]=0
        else:
            img[i,j]=1
            
plt.figure("lena")
plt.imshow(img,cmap='gray')
plt.axis('off')
plt.show()

如果要对多个像素点进行操作,可以使用数组切片方式访问。切片方式返回的是以指定间隔下标访问 该数组的像素值。下面是有关灰度图像的一些例子:

img[i,:] = im[j,:] # 将第 j 行的数值赋值给第 i 行

img[:,i] = 100 # 将第 i 列的所有数值设为 100

img[:100,:50].sum() # 计算前 100 行、前 50 列所有数值的和

img[50:100,50:100] # 50~100 行,50~100 列(不包括第 100 行和第 100 列)

img[i].mean() # 第 i 行所有数值的平均值

img[:,-1] # 最后一列

img[-2,:] (or im[-2]) # 倒数第二行

分类: Python

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏瓜大三哥

图像分割(六)

图像分割(六) 之基于FPGA的局部自适应分割 子模块设计 顶层模块gauss_segment_2d 有了以上几个模块,顶层设计就十分简单了。需要例化一个均值...

23610
来自专栏简书专栏

基于RandomForestRegressor的波士顿房价回归预测

2018年8月27日笔记 sklearn官方英文用户使用指南:https://sklearn.org/user_guide.html sklearn翻译中文...

3083
来自专栏落影的专栏

Metal视频处理——绿幕视频合成

Metal入门教程总结 Metal图像处理——直方图均衡化 本文介绍如何用Metal把一个带绿幕的视频和一个普通视频进行合并。

1K3
来自专栏tkokof 的技术,小趣及杂念

数学笔记(二)之平面表示

  假设我们知道垂直于平面的法向量n,以及平面上的一点p0,如何使用这两个元素来表示该平面呢?

822
来自专栏LhWorld哥陪你聊算法

【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流...

1191
来自专栏人工智能头条

Keras/Python深度学习中的网格搜索超参数调优(上)

7456
来自专栏我爱编程

Matplotlib入门

qiangbo.space/2018-04-06/matplotlib_l1/ 入门代码示例 import matplotlib.pyplot as plt ...

3889
来自专栏Python中文社区

Python用Pillow(PIL)进行简单的图像操作

專 欄 ❈ sunhaiyu,Python中文社区专栏作者 专栏地址: http://www.jianshu.com/u/4943cb2c6ea4 ❈ Pyt...

39410
来自专栏人工智能

第四课:模型的使用

上一节我们创建了模型对象,也导入了测试集,可以说实现了一个简单机器学习的apk环境和核心代码。这一节我们一起看下开发一个完整的人工智能应用程序需要哪些步骤和代码...

2487
来自专栏贾志刚-OpenCV学堂

图像特征之局部二值模式

一:局部二值模式(LBP)介绍 局部二值模式(Local Binary Pattern)主要用来实现2D图像纹理分析。其基本思想是用每个像素跟它周围的像素相比...

3976

扫码关注云+社区

领取腾讯云代金券