卷积神经网络全面解析

最近仔细学习了一下卷积神经网络(CNN,Convolutional Neural Network),发现各处资料都不是很全面,经过艰苦努力终于弄清楚了。为了以后备查,以及传播知识,决定记录下来。本文将极力避免废话,重点聚焦在推导过程上,为打算从零开始的孩纸说清楚“为什么”。

另外,因本人才疏学浅(是真的才疏学浅,不是谦虚),肯定会有很多谬误,欢迎大家指出!

卷积神经网络(CNN)概述

  • 由来:神经元网络的直接升级版
  • 相关:Yann LeCun和他的LeNet
  • 影响:在图像、语音领域不断突破,复兴了神经元网络并进入“深度学习”时代

卷积神经网络沿用了普通的神经元网络即多层感知器的结构,是一个前馈网络。以应用于图像领域的CNN为例,大体结构如图1。

很明显,这个典型的结构分为四个大层次

  • 输入图像I。为了减小复杂度,一般使用灰度图像。当然,也可以使用RGB彩色图像,此时输入图像有三张,分别为RGB分量。输入图像一般需要归一化,如果使用sigmoid激活函数,则归一化到[0, 1],如果使用tanh激活函数,则归一化到[-1, 1]。
  • 多个卷积(C)-下采样(S)层。将上一层的输出与本层权重W做卷积得到各个C层,然后下采样得到各个S层。怎么做以及为什么,下面会具体分析。这些层的输出称为Feature Map。
  • 光栅化(X)。是为了与传统的多层感知器全连接。即将上一层的所有Feature Map的每个像素依次展开,排成一列。
  • 传统的多层感知器(N&O)。最后的分类器一般使用Softmax,如果是二分类,当然也可以使用LR。

接下来,就开始深入探索这个结构吧!

从多层感知器(MLP)说起

卷积神经网络来源于普通的神经元网络。要了解个中渊源,就要先了解神经元网络的机制以及缺点。典型的神经元网络就是多层感知器。

摘要:本节主要内容为多层感知器(MLP,Multi-Layer Perceptron)的原理、权重更新公式的推导。熟悉这一部分的童鞋可以直接跳过了~但是,一定一定要注意,本节难度比较大,所以不熟悉的童鞋一定一定要认真看看!如果对推导过程没兴趣,可直接在本节最后看结论。

感知器

感知器(Perceptron)是建立模型

f(x)=act(θTx+b)f(x)=act(θTx+b)

其中激活函数 act 可以使用{sign, sigmoid, tanh}之一。

  • 激活函数使用符号函数 sign ,可求解损失函数最小化问题,通过梯度下降确定参数
  • 激活函数使用 sigmoid (或者 tanh ),则分类器事实上成为Logistic Regression(个人理解,请指正),可通过梯度上升极大化似然函数,或者梯度下降极小化损失函数,来确定参数
  • 如果需要多分类,则事实上成为Softmax Regression
  • 如要需要分离超平面恰好位于正例和负例的正中央,则成为支持向量机(SVM)。

感知器比较简单,资料也比较多,就不再详述。

多层感知器

感知器存在的问题是,对线性可分数据工作良好,如果设定迭代次数上限,则也能一定程度上处理近似线性可分数据。但是对于非线性可分的数据,比如最简单的异或问题,感知器就无能为力了。这时候就需要引入多层感知器这个大杀器。

多层感知器的思路是,尽管原始数据是非线性可分的,但是可以通过某种方法将其映射到一个线性可分的高维空间中,从而使用线性分类器完成分类。图1中,从X到O这几层,正展示了多层感知器的一个典型结构,即输入层-隐层-输出层。

输入层-隐层

是一个全连接的网络,即每个输入节点都连接到所有的隐层节点上。更详细地说,可以把输入层视为一个向量 xx ,而隐层节点 jj 有一个权值向量 θjθj 以及偏置 bjbj ,激活函数使用 sigmoid 或 tanh ,那么这个隐层节点的输出应该是

fj(x)=act(θTjx+bj)fj(x)=act(θjTx+bj)

也就是每个隐层节点都相当于一个感知器。每个隐层节点产生一个输出,那么隐层所有节点的输出就成为一个向量,即

f(x)=act(Θx+b)f(x)=act(Θx+b)

若输入层有 mm 个节点,隐层有 nn 个节点,那么 Θ=[θT]Θ=[θT] 为 n×mn×m 的矩阵,xx 为长为 mm 的向量,bb 为长为 nn 的向量,激活函数作用在向量的每个分量上, f(x)f(x) 返回一个向量。

隐层-输出层

可以视为级联在隐层上的一个感知器。若为二分类,则常用Logistic Regression;若为多分类,则常用Softmax Regression。

Back Propagation

搞清楚了模型的结构,接下来就需要通过某种方法来估计参数了。对于一般的问题,可以通过求解损失函数极小化问题来进行参数估计。但是对于多层感知器中的隐层,因为无法直接得到其输出值,当然不能够直接使用到其损失了。这时,就需要将损失从顶层反向传播(Back Propagate)到隐层,来完成参数估计的目标。

首先,约定标量为普通小写字母,向量为加粗小写字母,矩阵为加粗大写字母;再约定以下记号:

  • 输入样本为 xx,其标签为 tt
  • 对某个层 QQ ,其输出为 oQoQ ,其第 jj 个节点的输出为 o(j)QoQ(j) ,其每个节点的输入均为上一层 PP 的输出 oPoP ;层 QQ 的权重为矩阵 ΘQΘQ ,连接层 PP 的第 ii 个节点与层 QQ 的第 jj 个节点的权重为 θ(ji)QθQ(ji)
  • 对输出层 YY ,设其输出为 oYoY, 其第 yy 个节点的输出为 o(y)YoY(y)

现在可以定义损失函数

⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪Eo(j)Qn(j)Q=12∑y∈Y(t(y)−o(y)Y)2=ϕ(n(j)Q)=∑i∈Pθ(ji)Qo(i)P+b(j)Q{E=12∑y∈Y(t(y)−oY(y))2oQ(j)=ϕ(nQ(j))nQ(j)=∑i∈PθQ(ji)oP(i)+bQ(j)

其中, ϕϕ 为激活函数。我们依旧通过极小化损失函数的方法,尝试进行推导。则

⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪∂E∂θ(ji)Q∂E∂b(j)Q=∂E∂o(j)Q∂o(j)Q∂n(j)Q∂n(j)Q∂θ(ji)Q=∂E∂o(j)Q∂o(j)Q∂n(j)Q∂n(j)Q∂b(j)Q{∂E∂θQ(ji)=∂E∂oQ(j)∂oQ(j)∂nQ(j)∂nQ(j)∂θQ(ji)∂E∂bQ(j)=∂E∂oQ(j)∂oQ(j)∂nQ(j)∂nQ(j)∂bQ(j)

上边两个式子的等号右边部有三个导数比较容易确定

⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪∂o(j)Q∂n(j)Q∂n(j)Q∂θ(ji)Q∂n(j)Q∂b(j)Q=ϕ′(n(j)Q)=o(i)P=1{∂oQ(j)∂nQ(j)=ϕ′(nQ(j))∂nQ(j)∂θQ(ji)=oP(i)∂nQ(j)∂bQ(j)=1

然后再看剩下的比较复杂的一个偏导数。考虑层 QQ 的下一层 RR ,其节点 kk 的输入为层 QQ 中每个节点的输出,也就是为 o(j)QoQ(j) 的函数,考虑逆函数,可视 o(j)QoQ(j) 为 o(k)RoR(k) 的函数,也为 n(k)RnR(k) 的函数。则对每个隐层

∂E∂o(j)Q=∂E(n(1)R,n(2)R,...,n(k)R,...,n(K)R)∂o(j)Q=∑k∈R∂E∂n(k)R∂n(k)R∂o(j)Q=∑k∈R∂E∂o(k)R∂o(k)R∂n(k)R∂n(k)R∂o(j)Q=∑k∈R∂E∂o(k)R∂o(k)R∂n(k)Rθ(kj)R∂E∂oQ(j)=∂E(nR(1),nR(2),...,nR(k),...,nR(K))∂oQ(j)=∑k∈R∂E∂nR(k)∂nR(k)∂oQ(j)=∑k∈R∂E∂oR(k)∂oR(k)∂nR(k)∂nR(k)∂oQ(j)=∑k∈R∂E∂oR(k)∂oR(k)∂nR(k)θR(kj)

令 δ(j)Q=∂E∂o(j)Q∂o(j)Q∂n(j)QδQ(j)=∂E∂oQ(j)∂oQ(j)∂nQ(j)

则对每个隐层

∂E∂o(j)Q=∑k∈R∂E∂o(k)R∂o(k)R∂n(k)Rθ(kj)R=∑k∈Rδ(k)Rθ(kj)R∂E∂oQ(j)=∑k∈R∂E∂oR(k)∂oR(k)∂nR(k)θR(kj)=∑k∈RδR(k)θR(kj)

考虑到输出层,有

∂E∂o(j)Q=⎧⎩⎨⎪⎪∑k∈Rδ(k)Rθ(kj)R,o(j)Y−t(j),k has input node jj is an output node, i.e. Q=Y∂E∂oQ(j)={∑k∈RδR(k)θR(kj),k has input node joY(j)−t(j),j is an output node, i.e. Q=Y

故有

δ(j)Q=∂E∂o(j)Q∂o(j)Q∂n(j)Q=∂E∂o(j)Qϕ′(n(j)Q)=⎧⎩⎨⎪⎪(∑k∈Rδ(k)Rθ(kj)R)ϕ′(n(j)Q),(o(j)Y−t(j))ϕ′(n(j)Y),k has input node jj is an output node, i.e. Q=YδQ(j)=∂E∂oQ(j)∂oQ(j)∂nQ(j)=∂E∂oQ(j)ϕ′(nQ(j))={(∑k∈RδR(k)θR(kj))ϕ′(nQ(j)),k has input node j(oY(j)−t(j))ϕ′(nY(j)),j is an output node, i.e. Q=Y

综合以上各式,有梯度结果

∂E∂θ(ji)Q∂E∂b(j)Q=∂E∂o(j)Q∂o(j)Q∂n(j)Q∂n(j)Q∂θ(ji)Q=δ(j)Qo(i)P=∂E∂o(j)Q∂o(j)Q∂n(j)Q∂n(j)Q∂b(j)Q=δ(j)Q∂E∂θQ(ji)=∂E∂oQ(j)∂oQ(j)∂nQ(j)∂nQ(j)∂θQ(ji)=δQ(j)oP(i)∂E∂bQ(j)=∂E∂oQ(j)∂oQ(j)∂nQ(j)∂nQ(j)∂bQ(j)=δQ(j)

本来到这里应该就结束了,不过同正向的时候一样,为了计算方便,我们依然希望能够以矩阵或者向量的方式来表达。结论在这里:

假设有层 P,Q,RP,Q,R ,分别有 l,m,nl,m,n 个节点,依序前者输出全连接到后者作为输入。层 QQ 有权重矩阵 [ΘQ]m×l[ΘQ]m×l ,偏置向量 [bQ]m×1[bQ]m×1 ,层 RR 有权重矩阵 [ΘR]n×m[ΘR]n×m ,偏置向量 [bR]n×1[bR]n×1 。那么

∂E∂ΘQ∂E∂bQδQ=δQoTP=δQ={(ΘTRδR)∘ϕ′(nQ),(oY−t)∘ϕ′(nY),Q is a hidden layerQ=Y is the output layer∂E∂ΘQ=δQoPT∂E∂bQ=δQδQ={(ΘRTδR)∘ϕ′(nQ),Q is a hidden layer(oY−t)∘ϕ′(nY),Q=Y is the output layer

其中,运算 w=u∘vw=u∘v 表示 wi=uiviwi=uivi 。函数作用在向量或者矩阵上,表示作用在其每个分量上。

最后,补充几个常用的激活函数的导数结果,推导很简单,从略。

ϕ′(x)ϕ′(x)ϕ′(x)=sigmoid′(x)=sigmoid(x)(1−sigmoid(x))=oQ(1−oQ)=tanh′(x)=1−tanh2(x)=1−o2Q=softmax′(x)=softmax(x)−softmax2(x)=oQ−o2Qϕ′(x)=sigmoid′(x)=sigmoid(x)(1−sigmoid(x))=oQ(1−oQ)ϕ′(x)=tanh′(x)=1−tanh2(x)=1−oQ2ϕ′(x)=softmax′(x)=softmax(x)−softmax2(x)=oQ−oQ2

存在的问题

多层感知器存在的最大的问题就是,它是一个全连接的网络,因此在输入比较大的时候,权值会特别多。比如一个有1000个节点的隐层,连接到一个1000×1000的图像上,那么就需要 10^9 个权值参数(外加1000个偏置参数)!这个问题,一方面限制了每层能够容纳的最大神经元数目,另一方面也限制了多层感知器的层数即深度。

多层感知器的另一个问题是梯度发散。 (这个问题的具体原因还没有完全弄清楚,求指教!) 一般情况下,我们需要把输入归一化,而每个神经元的输出在激活函数的作用下也是归一化的;另外,有效的参数其绝对值也一般是小于1的;这样,在BP过程中,多个小于1的数连乘,得到的会是更小的值。也就是说,在深度增加的情况下,从后传播到前边的残差会越来越小,甚至对更新权值起不到帮助,从而失去训练效果,使得前边层的参数趋于随机化(补充一下,其实随机参数也是能一定程度上捕捉到图像边缘的)。

感谢shwley提供的帮助~

因为这些问题,神经元网络在很长一段时间内都被冷落了。

从MLP到CNN

卷积神经网络的名字怪吓人,实际理解起来也挺吓人的。哈哈,其实只要看明白了多层感知器的推导过程,理解卷积神经网络就差不多可以信手拈来了。

摘要:首先解释卷积神经网络为什么会“长”成现在这般模样。然后详细推导了卷积神经网络的预测过程和参数估计方法。

CNN的前世今生

既然多层感知器存在问题,那么卷积神经网络的出现,就是为了解决它的问题。卷积神经网络的核心出发点有三个。

  • 局部感受野。形象地说,就是模仿你的眼睛,想想看,你在看东西的时候,目光是聚焦在一个相对很小的局部的吧?严格一些说,普通的多层感知器中,隐层节点会全连接到一个图像的每个像素点上,而在卷积神经网络中,每个隐层节点只连接到图像某个足够小局部的像素点上,从而大大减少需要训练的权值参数。举个栗子,依旧是1000×1000的图像,使用10×10的感受野,那么每个神经元只需要100个权值参数;不幸的是,由于需要将输入图像扫描一遍,共需要991×991个神经元!参数数目减少了一个数量级,不过还是太多。
  • 权值共享。形象地说,就如同你的某个神经中枢中的神经细胞,它们的结构、功能是相同的,甚至是可以互相替代的。也就是,在卷积神经网中,同一个卷积核内,所有的神经元的权值是相同的,从而大大减少需要训练的参数。继续上一个栗子,虽然需要991×991个神经元,但是它们的权值是共享的呀,所以还是只需要100个权值参数,以及1个偏置参数。从MLP的 10^9 到这里的100,就是这么狠!作为补充,在CNN中的每个隐藏,一般会有多个卷积核。
  • 池化。形象地说,你先随便看向远方,然后闭上眼睛,你仍然记得看到了些什么,但是你能完全回忆起你刚刚看到的每一个细节吗?同样,在卷积神经网络中,没有必要一定就要对原图像做处理,而是可以使用某种“压缩”方法,这就是池化,也就是每次将原图像卷积后,都通过一个下采样的过程,来减小图像的规模。以最大池化(Max Pooling)为例,1000×1000的图像经过10×10的卷积核卷积后,得到的是991×991的特征图,然后使用2×2的池化规模,即每4个点组成的小方块中,取最大的一个作为输出,最终得到的是496×496大小的特征图。

现在来看,需要训练参数过多的问题已经完美解决。 而梯度发散的问题,因为还不清楚具体缘由,依然留待讨论。 关于梯度发散,因为多个神经元共享权值,因此它们也会对同一个权值进行修正,积少成多,积少成多,积少成多,从而一定程度上解决梯度发散的问题!

下面我们来揭开卷积神经网络中“卷积”一词的神秘面纱。

CNN的预测过程

回到开头的图1,卷积神经网络的预测过程主要有四种操作:卷积、下采样、光栅化、多层感知器预测。

卷积

先抛开卷积这个概念不管。为简便起见,考虑一个大小为5×5的图像,和一个3×3的卷积核。这里的卷积核共有9个参数,就记为 Θ=[θij]3×3Θ=[θij]3×3 吧。这种情况下,卷积核实际上有9个神经元,他们的输出又组成一个3×3的矩阵,称为特征图。第一个神经元连接到图像的第一个3×3的局部,第二个神经元则连接到第二个局部(注意,有重叠!就跟你的目光扫视时也是连续扫视一样)。具体如图2所示。

图2的上方是第一个神经元的输出,下方是第二个神经元的输出。每个神经元的运算依旧是

f(x)=act(∑i,jnθ(n−i)(n−j)xij+b)f(x)=act(∑i,jnθ(n−i)(n−j)xij+b)

需要注意的是,平时我们在运算时,习惯使用 θijxijθijxij 这种写法,但事实上,我们这里使用的是 θ(n−i)(n−j)xijθ(n−i)(n−j)xij ,原因马上揭晓。

现在我们回忆一下离散卷积运算。假设有二维离散函数 f(x,y),g(x,y)f(x,y),g(x,y) , 那么它们的卷积定义为

f(m,n)∗g(m,n)=∑u∞∑v∞f(u,v)g(m−u,n−v)f(m,n)∗g(m,n)=∑u∞∑v∞f(u,v)g(m−u,n−v)

现在发现了吧!上面例子中的9个神经元均完成输出后,实际上等价于图像和卷积核的卷积操作!这就是“卷积神经网络”名称的由来,也是为什么在神经元运算时使用 θ(n−i)(n−j)xijθ(n−i)(n−j)xij 。

如果你足够细心,就会发现其实上述例子中的运算并不完全符合二维卷积的定义。实际上,我们需要用到的卷积操作有两种模式:

  • valid模式,用 ∗v∗v 表示。即上边例子中的运算。在这种模式下,卷积只发生在被卷积的函数的定义域“内部”。一个 m×nm×n 的矩阵被一个 p×qp×q 的矩阵卷积( m≥p,n≥qm≥p,n≥q ),得到的是一个 (m−p+1)×(n−q+1)(m−p+1)×(n−q+1) 的矩阵。
  • full模式,用 ∗f∗f 表示。这种模式才是上边二维卷积的定义。一个 m×nm×n 的矩阵被一个 p×qp×q 的矩阵卷积,得到的是一个 (m+p−1)×(n+q−1)(m+p−1)×(n+q−1) 的矩阵。

现在总结一下卷积过程。如果卷积层 cc 中的一个“神经中枢” jj 连接到特征图 X1,X2,...,XiX1,X2,...,Xi ,且这个卷积核的权重矩阵为 ΘjΘj ,那么这个神经中枢的输出为

Oj=ϕ(∑iXi∗vΘj+bj)Oj=ϕ(∑iXi∗vΘj+bj)

下采样

下采样,即池化,目的是减小特征图,池化规模一般为2×2。常用的池化方法有:

  • 最大池化(Max Pooling)。取4个点的最大值。这是最常用的池化方法。
  • 均值池化(Mean Pooling)。取4个点的均值。
  • 高斯池化。借鉴高斯模糊的方法。不常用。具体过程不是很清楚。。。
  • 可训练池化。训练函数 ff ,接受4个点为输入,出入1个点。不常用。

由于特征图的变长不一定是2的倍数,所以在边缘处理上也有两种方案:

  • 忽略边缘。即将多出来的边缘直接省去。
  • 保留边缘。即将特征图的变长用0填充为2的倍数,然后再池化。一般使用这种方式。

对神经中枢 jj 的输出 OjOj ,使用池化函数 downsample ,池化后的结果为

Sj=downsample(Oj)Sj=downsample(Oj)

光栅化

图像经过池化-下采样后,得到的是一系列的特征图,而多层感知器接受的输入是一个向量。因此需要将这些特征图中的像素依次取出,排列成一个向量。具体说,对特征图 X1,X2,...,XjX1,X2,...,Xj ,光栅化后得到的向量

ok=[x111,x112,...,x11n,x121,x122,...,x12n,...,x1mn,...,x2mn,...,xjmn]Tok=[x111,x112,...,x11n,x121,x122,...,x12n,...,x1mn,...,x2mn,...,xjmn]T

多层感知器预测

将光栅化后的向量连接到多层感知器即可。

CNN的参数估计

卷积神经网络的参数估计依旧使用Back Propagation的方法,不过需要针对卷积神经网络的特点进行一些修改。我们从高层到底层,逐层进行分析。

多层感知器层

使用多层感知器的参数估计方法,得到其最低的一个隐层 SS 的残差向量 δsδs 。现在需要将这个残差传播到光栅化层 RR ,光栅化的时候并没有对向量的值做修改,因此其激活函数为恒等函数,其导数为单位向量。

δR=(ΘTSδS)∘ϕ′(nR)=ΘTSδSδR=(ΘSTδS)∘ϕ′(nR)=ΘSTδS

光栅化层

从上一层传过来的残差为

δR=[δ111,δ112,...,δ11n,δ121,δ122,...,δ12n,...,δ1mn,...,δ2mn,...,δjmn]TδR=[δ111,δ112,...,δ11n,δ121,δ122,...,δ12n,...,δ1mn,...,δ2mn,...,δjmn]T

重新整理成为一系列的矩阵即可,若上一层 QQ 有 qq 个池化核,则传播到池化层的残差

ΔQ=Δ1,Δ2,...,ΔqΔQ=Δ1,Δ2,...,Δq

池化层

对应池化过程中常用的两种池化方案,这里反传残差的时候也有两种上采样方案:

  • 最大池化:将1个点的残差直接拷贝到4个点上。
  • 均值池化:将1个点的残差平均到4个点上。

即传播到卷积层的残差

Δp=upsample(Δq)Δp=upsample(Δq)

卷积层

卷积层有参数,所以卷积层的反传过程有两个任务,一是更新权值,另一是反传残差。先看更新权值,即梯度的推导。

如图三上方,先考虑卷积层的某个“神经中枢”中的第一个神经元。根据多层感知器的梯度公式

∂E∂θji=δjoi∂E∂θji=δjoi

那么在图三上方的例子中,有

∂E∂θ11=δ11o22∂E∂θ12=δ11o21∂E∂θ21=δ11o12∂E∂θ22=δ11o11∂E∂θ11=δ11o22∂E∂θ12=δ11o21∂E∂θ21=δ11o12∂E∂θ22=δ11o11

考虑到其他的神经元,每次更新的都是这四个权值,因此实际上等价于一次更新这些偏导数的和。如果仅考虑对 θ11θ11 的偏导数,不难发现如图3下方所示,其值应该来自于淡蓝色和灰色区域。是不是似曾相识?是的,又是卷积!但是又有两处重要的不同:

  • 在计算对 θ11θ11 的偏导数时,淡蓝色区域和灰色区域的对应位置做运算,但是在卷积运算中,这些位置应该是旋转过来的!
  • θ11θ11 在 ΘΘ 矩阵的左上角,而淡蓝色区域在右下角,同样是旋转过的!

因此,对卷积层 PP 中的某个“神经中枢” pp, 权值(以及偏置,不再具体推导)更新公式应该是

∂E∂Θp∂E∂bp=rot180((∑q′Oq′)∗vrot180(Δp))=∑u,v(δp)uv∂E∂Θp=rot180((∑q′Oq′)∗vrot180(Δp))∂E∂bp=∑u,v(δp)uv

其中,rot180rot180 是将一个矩阵旋转180度; Oq′Oq′ 是连接到该“神经中枢”前的池化层的输出;对偏置的梯度即 ΔpΔp 所有元素之和。

下面讨论残差反传的问题。

如图4,考虑淡蓝色像素点影响到的神经元,在这个例子中,受影响的神经元有4个,他们分别以某个权值与淡蓝色像素运算后影响到对应位置的输出。再结合多层感知器的残差传播公式,不难发现这里又是一个卷积过程!同样需要注意的是,正如图4中的数字标号,这里的卷积是旋转过的;另外,这里用的卷积模式是full。

如果前边的池化层 Q′Q′ 的某个特征图 q′q′ 连接到这个卷积层 PP 中的某“神经中枢”集合 CC ,那么传播到 q′q′ 的残差为

Δq′=(∑p∈CΔp∗frot180(Θp))∘ϕ′(Oq′)Δq′=(∑p∈CΔp∗frot180(Θp))∘ϕ′(Oq′)

最后一公里:Softmax

前边我有意忽略了对Softmax的讨论,在这里补上。因为Softmax的资料已经非常多了,所以这里不再详细讨论。具体可以参考这篇文章

需要补充说明的是,不难发现,Softmax的梯度公式与多层感知器的BP过程是兼容的;另外,实现Softmax的时候,如果需要分为 kk个类,同样也可以设置 kk 个输出节点,这相当于隐含了一个类别名称为“其他”的类。

CNN的实现

我建立了一个Github的repo,目前内容还是空的,近期会逐渐上传。

思路

以层为单位,分别实现卷积层、池化层、光栅化层、MLP隐层、Softmax层这五个层的类。其中每个类都有output和backpropagate这两个方法。

另外,还需要一系列的辅助方法,包括:conv2d(二维离散卷积,valid和full模式),downsample(池化中需要的下采样,两种边界模式),upsample(池化中的上采样),以及dsigmoid和dtanh等。

其他

还需要考虑的是可扩展性和性能优化,这些以后再谈~

如何在一年内有效提高自己 第三版

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏GAN&CV

风格迁移背后原理及tensorflow实现

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/d...

2791
来自专栏机器学习算法工程师

风格迁移原理及tensorflow实现-附代码

作者:刘威威 编辑:田 旭 前 言 本文将详细介绍 tf 实现风格迁移的小demo,看完这篇就可以去实现自己的风格迁移了,复现的算法来自论文 Percept...

1.9K8
来自专栏机器学习算法与Python学习

机器学习(7) -- k-means 聚类

根据大家的提议,从今天起每次算法介绍完之后会给大家一个用python编写的实例刚打架参考 Clustering  9. Clustering     9.1...

3785
来自专栏自学笔记

Neural Network

重新回顾一下一开始学的PLA,preceptron learning Algorithm。PLA适用于二维及高维的线性可分的情况,如果是非线性可分的数据,如果使...

2172
来自专栏深度学习入门与实践

【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度。有的同学表示不是很理解原理,为什么传统的机器...

1.4K10
来自专栏ATYUN订阅号

如何在Python中扩展LSTM网络的数据

您的序列预测问题的数据可能需要在训练神经网络时进行缩放,例如LSTM递归神经网络。 当网络适合具有一定范围值(例如10s到100s的数量)的非标度数据时,大量...

3935
来自专栏机器学习算法与Python学习

机器学习(14)之评价准则RoC与PR

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 在机器学习的算法评估中,尤其...

3496
来自专栏IT派

对数几率回归 —— Logistic Regression

首先,在引入LR(Logistic Regression)模型之前,非常重要的一个概念是,该模型在设计之初是用来解决0/1二分类问题,虽然它的名字中有回归二字,...

1292
来自专栏专知

神经网络编程 - 前向传播和后向传播(附完整代码)

【导读】本文的目的是深入分析深层神经网络,剖析神经网络的结构,并在此基础上解释重要概念,具体分为两部分:神经网络编程和应用。在神经网络编程部分,讲解了前向传播和...

3017
来自专栏数据派THU

一文图解机器学习的基本算法!

来源:软件定义世界 本文长度为2877字,建议阅读6分钟 本文为你分析如何选择机器学习的各种方法。 每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕,...

2315

扫码关注云+社区

领取腾讯云代金券