前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >dsu on tree入门

dsu on tree入门

作者头像
attack
发布2018-09-21 14:53:26
9950
发布2018-09-21 14:53:26
举报
文章被收录于专栏:数据结构与算法

先瞎扯几句

说起来我跟这个算法好像还有很深的渊源呢qwq。当时在学业水平考试的考场上,题目都做完了不会做,于是开始xjb出题。突然我想到这么一个题

看起来好像很可做的样子,然而直到考试完我都只想出来一个莫队的暴力。当时我想知道有没有比莫队更优的做法,和zbq讨论了半天也只能搞出一个$O(nlog^2n)$的平衡树启发式合并

然后!!我就把这题出给校内互测了!!没错,当时是用莫队当的标算!

结果!mjt用一个假的$O(n)$算法艹过去了因为数据特别水

后来我打算把这题出给另一场比赛,结果到了前一天晚上造数据的时候我发现不太对,然后把mjt的算法hack了。

去UOJ群里一问才知道这玩意儿是个dsu on tree的sb题。

当时我就这个表情

自己还是太年轻啊%>_<%

好了好了,来讲算法吧

Dsu on tree

简介

dsu on tree跟dsu(并查集)是没啥关系,可能是借用了一波启发式合并的思想??

它是用来解决一类树上询问问题,一般这种问题有两个特征

1、只有对子树的询问

2、没有修改

一般这时候就可以强上dsu on tree了

算法流程

考虑暴力怎么写:遍历每个节点—把子树中的所有颜色暴力统计出来更新答案—消除该节点的贡献—继续递归

这肯定是$O(n^2)$的。

dsu on tree巧妙的利用了轻重链剖分的性质,把复杂度降到了$O(nlogn)$

啥啥啥?你不知道啥叫轻重链剖分?

一句话:对于树上的一个点,与其相连的边中,连向的节点子树大小最大的边叫做重边,其他的边叫轻边

 dsu on tree的算法流程是这样的:

对于节点$i$:

  • 遍历每一个节点
    • 递归解决所有的轻儿子,同时消除递归产生的影响
  • 递归重儿子,不消除递归的影响
  • 统计所有轻儿子对答案的影响
  • 更新该节点的答案
  • 删除所有轻儿子对答案的影响

主体框架长这样

可能你先在会想:为什么都是暴力统计答案?这样复杂度不是$O(n^2)$的么?

那简单的来证一下这东西的复杂度

复杂度

性质:一个节点到根的路径上轻边个数不会超过$logn$条

证明:

设根到该节点有$x$条轻边,该节点的大小为$y$,根据轻重边的定义,轻边所连向的点的大小不会成为该节点总大小的一般。

这样每经过一条轻边,$y$的上限就会$ / 2$,因此$y < \frac{n}{2^x}$

因为$n > 2^x$,所以$x < logn$

然而这条性质并不能解决问题。

我们考虑一个点会被访问多少次

一个点被访问到,只有两种情况

1、在暴力统计轻边的时候访问到。

根据前面的性质,该次数$< logn$

2、通过重边 / 在遍历的时候被访问到

显然只有一次

如果统计一个点的贡献的复杂度为$O(1)$的话,该算法的复杂度为$O(nlogn)$

模板题

cf600E. Lomsat gelral

 题意:给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和

 dsu on tree的模板题,暴力统计即可

代码语言:javascript
复制
#include<bits/stdc++.h>
#define LL long long 
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, col[MAXN], son[MAXN], siz[MAXN], cnt[MAXN], Mx, Son;
LL sum = 0, ans[MAXN];
vector<int> v[MAXN];
void dfs(int x, int fa) {
    siz[x] = 1;
    for(int i = 0; i < v[x].size(); i++) {
        int to = v[x][i];
        if(to == fa) continue;
        dfs(to, x);
        siz[x] += siz[to];
        if(siz[to] > siz[son[x]]) son[x] = to;//轻重链剖分
    }
}
void add(int x, int fa, int val) {
    cnt[col[x]] += val;//这里可能会因题目而异
    if(cnt[col[x]] > Mx) Mx = cnt[col[x]], sum = col[x];
    else if(cnt[col[x]] == Mx) sum += (LL)col[x];
    for(int i = 0; i < v[x].size(); i++) {
        int to = v[x][i];
        if(to == fa || to == Son) continue;
        add(to, x, val);
    }
}
void dfs2(int x, int fa, int opt) {
    for(int i = 0; i < v[x].size(); i++) {
        int to = v[x][i];
        if(to == fa) continue;
        if(to != son[x]) dfs2(to, x, 0);//暴力统计轻边的贡献,opt = 0表示递归完成后消除对该点的影响
    }
    if(son[x]) dfs2(son[x], x, 1), Son = son[x];//统计重儿子的贡献,不消除影响

    add(x, fa, 1); Son = 0;//暴力统计所有轻儿子的贡献
    ans[x] = sum;//更新答案
    if(!opt) add(x, fa, -1), sum = 0, Mx = 0;//如果需要删除贡献的话就删掉
}
int main() {
    N = read();
    for(int i = 1; i <= N; i++) col[i] = read();
    for(int i = 1; i <= N - 1; i++) {
        int x = read(), y = read();
        v[x].push_back(y); v[y].push_back(x);
    }
    dfs(1, 0);
    dfs2(1, 0, 0);
    for(int i = 1; i <= N; i++) printf("%I64d ", ans[i]);
    return 0;
}

参考资料

[Codeforces600E]Lomsat gelral(dsu on the tree)

[trick]dsu on tree

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-09-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 先瞎扯几句
  • Dsu on tree
    • 简介
      • 算法流程
        • 复杂度
          • 模板题
          • 参考资料
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档