概率论06 连续分布

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

随机变量中,我提到了连续随机变量。相对于离散随机变量,连续随机变量可以在一个连续区间内取值。比如一个均匀分布,从0到1的区间内取值。一个区间内包含了无穷多个实数,连续随机变量的取值就有无穷多个可能。

为了表示连续随机变量的概率分布,我们可以使用累积分布函数或者密度函数。密度函数是对累积分布函数的微分。连续随机变量在某个区间内的概率可以使用累积分布函数相减获得,即密度函数在相应区间的积分。

随机变量中,我们了解了一种连续分布,即均匀分布(uniform distribution)。这里将罗列一些其他的经典连续分布。

指数分布

指数分布(exponential distribution)的密度函数随着取值的变大而指数减小。指数分布的密度函数为:

$$f(x) = \left\{ \begin{array}{rcl} \lambda e^{-\lambda x} & if & x \ge 0 \\ 0 & if & x < 0 \end{array} \right.$$

累积分布函数为:

$$F(x) = 1 - e^{-\lambda x}, x \ge 0$$

我们绘制一个指数分布[$\lambda = 0.2$],如下:

这样一种分布在生活中很常见。比如,洪水等级的分布就类似于这样一个分布。小等级的洪水常发生,而大洪水发生的概率则很小。再比如,金矿的分布:大部分矿石的含金量少,而少部分矿石的含金量高。这提醒我们,一些特殊的条件导致了指数分布。感兴趣的话可以学习“随机过程”这一数学分支。

代码如下:

from scipy.stats import expon
import numpy as np
import matplotlib.pyplot as plt

rv = expon(scale = 5)

x = np.linspace(0, 20, 100)

plt.plot(x, rv.pdf(x))
plt.xlim([0, 15])
plt.title("exponential distribution")
plt.xlabel("RV")
plt.ylabel("f(x)")

plt.show()

上面的expon函数接收一个参数scale。参数scale等于[$1/\lambda$]

指数分布是无记忆(memoryless)的。我们以原子衰变为例。任意时刻往后,都需要10年的时间,会有一半的原子衰变。已经发生的衰变对后面原子衰变的概率分布无影响。用数学的语言来说,就是

$$P(X > s) = P(X > s+t | X>t), for\, s,t \ge 0$$

等式的左边是原子存活了s的概率。而等式的右边是某一时刻t之后,原子再存活s时间的概率。可以利用指数分布的累积分布函数,很容易的证明上面的等式。指数分布经常用于模拟人的寿命或者电子产品的寿命,这意味着我们同样假设这些分布是无记忆的。一个人活10年的概率和一个人到50岁后,再活10年的概率相等。这样的假设有可能与现实情况有所出入,需要注意。

正态分布

正态分布(normal distribution)是最常用到的概率分布。正态分布又被称为高斯分布(Gauss distribution),因为高斯在1809年使用该分布来预测星体位置。吐槽一句,第一个提出该分布的并不是数学王子高斯,而是法国人De Moivre。作为统计先驱,这位数学家需要在咖啡馆“坐台”,为赌徒计算概率为生。(看来法国咖啡馆不止有文艺青年,也有技术屌丝啊。)

Abraham De Moivre

Gauss

正态分布的发现来自于对误差的估计。早期的物理学家发现,在测量中,测量值的分布很有特点:靠近平均值时,概率大;远离平均值时,概率小。比如我们使用尺子去测量同一个物体的长度,重复许多次。如果没有系统误差,那么测量到的长度值是一个符合正态分布的随机变量。再比如,在电子信号中白噪音,也很有可能符合正态分布。De Moivre最早用离散的二项分布来趋近这一分布,而高斯给出了这一分布的具体数学形式。

正态分布自从一出生就带着无比强大的“主角光环”,它的特殊地位在后面文章中的中心极限定理中凸显出来。

正态分布的密度函数如下:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

正态分布有两个参数,[$\mu$]和[$\sigma$]。我们可以将正态分布表示成[$N(\mu, \sigma)$]。当[$\mu = 0$],[$\sigma = 1$],这样的正态分布被称作标准正态分布(standard normal distribution)。

我们绘制三个正态分布的密度函数:

可以看到,正态分布关于[$x = \mu$]对称,密度函数在此处取得最大值,并随着偏离中心而递减。如果以测量长度为例,这说明的读取值靠近[$\mu$]的可能性较大,而偏离[$\mu$]的可能性变小。

[$\sigma$]代表了概率分布的离散程度。[$\sigma$]越小,概率越趋近对称中心[$x = \mu$]。

代码如下:

# By Vamei

from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt

rv1 = norm(loc=0, scale = 1)
rv2 = norm(loc=2, scale = 1)
rv3 = norm(loc=0, scale = 2)
x = np.linspace(-5, 5, 200)

plt.plot(x, rv1.pdf(x), label="N(0,1)")
plt.plot(x, rv2.pdf(x), label="N(2,1)")
plt.plot(x, rv3.pdf(x), label="N(0,2)")
plt.legend()

plt.xlim([-5, 5])
plt.title("normal distribution")
plt.xlabel("RV")
plt.ylabel("f(x)")

plt.show()

正态分布在统计中有非常重要的地位。我们将在后面的中心极限理论的讲解中,看到这一点。

Gamma分布

Gamma分布在统计推断中具有重要地位。它的密度函数如下:

$$g(t) = \frac{\lambda^\alpha}{\Gamma(\alpha)}t^{\alpha-1}e^{-\lambda t}, t \ge 0$$

其中的Gamma函数可以表示为:

$$\Gamma(x) = \int \limits_{0}^{\infty} u^{x-1}e^{-u}du, x>0$$

注意到,Gamma分布有两个控制参数[$\alpha$]和[$\lambda$]。

练习,利用scipy.stats.gamma绘制[$\alpha = 1, \lambda = 1$]和[$\alpha = 5, \lambda = 1$]的Gamma分布密度函数。

总结

我们研究了三种连续随机变量的分布,并使用概率密度函数的方法来表示它们。密度函数在数学上比较容易处理,所以有很重要的理论意义。

密度函数在某个区间的积分,是随机变量在该区间取值的概率。这意味着,在密度函数的绘图中,概率是曲线下的面积。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏目标检测和深度学习

吴恩达授课,斯坦福CS230深度学习课程资源开放

课程地址:https://web.stanford.edu/class/cs230/

1824
来自专栏机器学习算法工程师

《机器学习》笔记-贝叶斯分类器(7)

作者:刘才权 编辑:陈人和 前 言 如今机器学习和深度学习如此火热,相信很多像我一样的普通程序猿或者还在大学校园中的同学,一定也想参与其中。不管是出于好奇,还...

3986
来自专栏机器之心

吴恩达授课,斯坦福CS230深度学习课程资源开放

课程地址:https://web.stanford.edu/class/cs230/

1112
来自专栏专知

【深度学习最精炼详实干货中文讲义】复旦邱锡鹏老师《神经网络与深度学习》讲义报告分享01(附报告pdf下载)

【导读】复旦大学副教授、博士生导师、开源自然语言处理工具FudanNLP的主要开发者邱锡鹏(http://nlp.fudan.edu.cn/xpqiu/)老师撰...

4725
来自专栏Vamei实验室

概率论06 连续分布

在随机变量中,我提到了连续随机变量。相对于离散随机变量,连续随机变量可以在一个连续区间内取值。比如一个均匀分布,从0到1的区间内取值。一个区间内包含了无穷多个实...

2318
来自专栏机器之心

深度学习贝叶斯,这是一份密集的6天速成课程(视频与PPT)

多数讲师和助教都是贝叶斯方法研究团队的成员以及来自世界顶级研究中心的研究者。很多讲师曾经在顶级国际机器学习会议例如 NIPS、ICML、ICCV、CVPR、IC...

1511
来自专栏自学笔记

机器学习可行性与VC dimension

在银行评估贷款申请人的授信请求前,会进行风险评估。符合申请则通过,反之驳回。长时间的数据和申请使得银行从中找到了一些规律并开始learning,所以风险评估就是...

2984
来自专栏灯塔大数据

塔说 | 如何理解深度神经网络中的泛化理论?

前言 近年来的深度神经网络研究进展往往都重方法而轻理论,但理论研究能够帮助我们更好地理解深度学习成功背后的真正原因,并有望为进一步的研究指明方向。近日,普林斯顿...

3936
来自专栏PPV课数据科学社区

贝叶斯、概率分布与机器学习

一. 简单的说贝叶斯定理: 贝叶斯定理用数学的方法来解释生活中大家都知道的常识 形式最简单的定理往往是最好的定理,比如说中心极限定理,这样的定理往往会成为某一个...

37110
来自专栏机器学习算法与Python学习

支持向量机(SVM)之Mercer定理与损失函数----5

任何时代,大部分人的研究所得都不过是基于前人的研究成果,前人所做的是开创性工作,而这往往是最艰难最有价值的,他们被称为真正的先驱。牛顿也曾说过,他不过是站在巨人...

1K7

扫码关注云+社区

领取腾讯云代金券