SolrLucene优劣势分析

摘要: 最早lucene2.4以及以前,追溯到2008年前后,lucene刚刚引起大家的关注,到后来Nutch、solr的出现,lucene变得更加热。Nutch、Solr的发展,极大推动了lucene的升级。对于一些接触过搜索,使用过lucene、solr的人来说,一般都会感觉lucene、solr很牛.

最早lucene2.4以及以前,追溯到2008年前后,lucene刚刚引起大家的关注,到后来Nutch

、solr的出现,lucene变得更加热。Nutch、Solr的发展,极大推动了lucene的升级。

对于一些接触过搜索,使用过lucene、solr的人来说,一般都会感觉lucene、solr很牛逼。我个人也认为solr、lucene确实非常NB,他涵盖了信息检索的几乎全部基础知识和非常高性能的实现方式。从solr的结构,扩展、维护整体看,发现有非常多的“工程亮点”,熟读solr定会增加对java的理解、运用技能。

但是,其实lucene solr有其自身的一些局限性,而这些局限性在大数据量的时候显得更为明显。

早些时候 Cedric Champeau 的评论

http://www.jroller.com/melix/entry/why_lucene_isn_t_that 和对应的中文版

http://www.jroller.com/melix/entry/why_lucene_isn_t_that

这个评论是在当时情况下给出的,截止2012.6.13日,有些问题已经在solr、nutch或者其他基于solr、hadoop、hbase、cassandra等系统上得到完善和运用。

下面结合实践经验,汇总一些solrlucene

在使用过程中的一些“短板”,之所以说是短板,因为只在有些情况下,才成为问题,有些情况下并不是问题。最后列举一些lucene、solr中对信息检索基础知识的支持和实现。

solrlucene 最大优势:

低成本、快速上手、开源社区发达,有问题基本上有现成的解决方法。

但是,也正因为如此,熟悉了solr、lucene并不能说一定可以应对任何搜索需求。因为实际场景中,有许多千奇百怪的需求、问题,往往需要面对的是用最小的改动、最方便的形式满足需求,而不是,是否满足以及多久满足的问题,要的是简单、可靠、可控、快速接入、快速处理故障。

最后汇聚成为“检索质量”,而这个标准是很难形成和取得相应口碑的。经验成为了搜索中的重要财富,而solr、lucene原理、源码只是一种最为基础和最为不可缺失的工具。理解了这些,是可以复制一个solr、lucene的,但是无法复制solr、lucene已经形成的开源经验、应用经验、讨论氛围等。

solrlucene 短板

短板越多,反应solr、lucene已经支持的场景非常多,提供服务的功能非常强大。所谓的短板,完全可以成为solr、lucene在生成环境中的应用特殊性所在、亮点所在。

(1) http 请求做了cache,有时候会出现新数据不可见,cache滞后的问题。—cache优化下也不是问题

(2) admin 后台页面,支持中文、复杂查询语法上,欠友好。—自己稍加扩展也不是问题

(3) swap core

的时候,单结点多core,并且core对应的索引比较大的时候,切换过程出现内存2倍化现象,甚至超时现象。—如果分前后排切换这些都不是问题了。

(4) index build和index search

往往在一起,导致全量过程,磁盘峰值3倍化。一份原来的、一份新建的、一份优化的时候。—-当然,build和search分离是可以解决这个问题的,也是常规做法。

(5) build 和search和在一起,也使得build

和search的一些参数设置不能区别对待,尤其是build和search合体的时候,预留磁盘、内存等加速build,反而影响search。—-当然可以

build search分离搞定

(6) 分布式查询,如果有merge,性能有些问题。—-当然可以将数据分区,避免merge

(7)

得分因子是可以调整的,但是得分因子的增加、得分公式的扩展,无法直接从solr配置插入。—-但是,可以扩展lucene的代码或者参数spanquery,重新一个query,插入solr,这样工作量稍大.另外,社区提供了bm25、pagerank等排序batch,对lucene有所以了解后,就可以直接引用了。

(8) solr

分布式索引全量、增量控制粒度,尚不够友好。指定结点、任何时刻全量,指定条件下增量都不够顺利。尽管solr提供了自定义扩展实现方法。这些也不是很大问题。

(9) solr

build和search和在一起,数据和业务其实绑定在一起了,没有彻底隔离。使得在上100个core的时候,数据源管理维护变得非常消耗资源。直接引入hadoop或者其他nosql存储时目前最流行的用来隔离数据和业务耦合性了。开源的分布式lucene方案非常多.

(10) ABTest 共享相同索引目录,而不同排序或者不同分词 solr不能直接支持

(11) ABTest 独立索引目录,不同排序或者不同分词,solr也不能直接支持

(12) 一个core

对应多个子目录,查询既可以查指定子目录也可以全部子目录查,以及更新某个子目录索引或者全部子目录索引,solr也不能直接支持,而这些在大数据量的时候是需要支持这些功能的。

(13)solr或者lucene

目前不支持快速的“局部”更新。这里是指对document的某个字段的快速更新,目前是需要传入完整的document,然后add进去。如果document

的不变字段来源多个源的话,IO、计算资源有些浪费,如果更新量不大还好。—当然可以对更新的单独开辟内存来处理,而更大的那个基本索引不去动他。

(14)solr不支持第三方条件过滤。例如从倒排中过滤处理一批doc,而这些doc需要与外部源进行doc

域值过滤。问题主要是第三方信息动态性太强,不利于直接写索引中去。

(15)solr 在支持中文分词的时候,有很多第三方包可以引入,但需要扩展query

parse有时候,总体看有优势也有劣势。优势是引入方便,劣势是词库、算法体系和lucene的不完全兼容,扩展、完善不是那么容易。

(16)

在排序上,对与去重或者对应基于时间动态性上,还没有现成的支持。去重是指排序的前几条结果,可能某个域值完全相同了,或者某几个域值完全相同,导致看起来,靠前的结果带有一些关联字段的“聚集性”,对有些应用来说,并不是最好的。

在时间因素上动态性,也没有直接支持,也只能靠间接的按时间排序来实现。

这个问题其实不是lucene、solr要关注的吧,应该是应用的特殊性导致的吧。

(17) solr

、lucene输出的日志,尚没有一个通用的分析工具,包括高频词、查询query聚合性等。只能自行去解析。

(18) 在支持推荐上,还不能将log信息直接关联起来,推荐也基本上靠离线计算好,导入倒排索引,查询再关联起来。

(19) 当内存30个G 以上,单节点索引数据量比较大的时候,jvm

环境下FGC和内存管理显得非常辣手。调优需要仔细的测试

(20) lucene很少面向接口,solr很多面向接口,插件化、可扩展使得solr很灵活

(21)

对于垂直型的平台化搜索,支持N个不同应用、不同schema、不同数据源、不同更新频率、不同查询逻辑、不同访问请求量、不同性能指标要求、不同机器配置、垂直扩容、水平扩容,solr显得不够胜任,尽管

solrcloud中已经有非常多的宝贵设计经验。

(22)

流控和数控,solr也不能直接支持。访问请求不支持定时和定量控制,索引垂直扩容(增加索引副本,支撑更多访问请求)、索引水平扩容(增加索引分区数,支撑更多数据量,平衡性能和空间压力)

(23) solr自容错还不够强大。例如schema

变更导致的不合理检测以及配置错误的回滚、solrconfig的一些参数不能动态获取,必须事先配置好。oom之后不能自动reload!请求量大的时候也不能抛弃一些请求。

(24) 基于位操作的高级应用还不够灵活,例如boolean 存储和facet、byte[]

存储和facet、group等,支撑仍然不够友好。

(25) query parse

基本没有预测功能,不能调整query顺序和自动收缩条件。当然一般情况下是不需要这么复杂的优化。

(26)一些比较变态的查询需求不是特别高效。例如查询某个域不空。当然可以将空域采取默认值代替,查询默认值再过滤。

(27)对于唯一值域,没有优化,导致唯一值域的term数据膨胀。最常见的就是更新时间、上传时间等,占了非常大的term比例

(28)multivalue 字段,实质是建立多个相同域名的字段,并不是一个域。对于域值很多内容的话,只好和在一起保存。同时,long

int short float double 等数组不能直接作为一个类型保存,全部得转为字符存储。空间和效率有些低。

(29)有些词出现的频率特别高,导致该词的倒排连非常长,solr、lucene也没有干涉。任务交给应用自己斟酌,实际上solr单节点对于命中超过100w的,并多字段排序的时候,cache失效时性能非常糟糕的。

(30)solrlucene 对于千万级别应用非常擅长,亿级别应用需要慎重对待。

lucene在信息检索基础理论的阐释:

(1) dictionary 和 postling 分离

(2) dictionary 压缩:基于词典、跳跃、前缀压缩、二分查找

(3) postling 压缩:差值压缩、可变字节压缩、p4del、simle9、simple16、跳跃表

(4) tfidf 默认实现、pagerank、 bm25等第三方实现支持

(5) 索引分段 segment、全量索引、增量索引、update-out-of-place、合并策略

(6) 查询多目录、查询分布式

(7) filter 过滤,bitmap的使用

(8) 各种cache的配置和使用以及监控

(9) 各种插件化支持、扩展灵活

(10) query 的and 与 or以及组合

(11) Top 、翻页、高亮、统计、分组的支持

(12) 模糊查询、区间查询、坡度查询统统支持

(13) 默认排序、自定义自段值排序、联合排序、动态排序、静态排序、queryboot、indexboot 一并支持

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Java后端技术栈

初探性能优化--2个月到4小时的性能提升!

一直不知道性能优化都要做些什么,从哪方面思考,直到最近接手了一个公司的小项目,可谓麻雀虽小五脏俱全。让我这个编程小白学到了很多性能优化的知识,或者说一些思考方式...

811
来自专栏牛客网

2018腾讯、美团C++后台研发实习生面经

2920
来自专栏Albert陈凯

2018-07-24 关于数据库‘状态’字段设计的思考与实践关于数据库‘状态’字段设计的思考与实践1. 问题综述2. 业务分析3. 问题一、订单表的‘订单状态’字段应当包含哪些状态值?4. 问题二、订

原文地址:https://blog.csdn.net/tan_jianhui/article/details/8571342

2701
来自专栏CSDN技术头条

N1QL为NoSQL数据库带来SQL般的查询体验

关系型数据库已经流行了超过40年,在这个过程中SQL也成为了操作关系型数据库的标准。SQL将数据的存储方式进行了包装和抽象,使开发人员可以专注于程序逻辑。对开发...

2189
来自专栏前端大白专栏

最近在学习react-native 为之后的找工作做准备

2049
来自专栏乐沙弥的世界

Python简介

版权声明:本文为博主原创文章,欢迎扩散,扩散请务必注明出处。

1893
来自专栏老秦求学

深入理解计算机系统读书笔记之第一章:漫游

我是从豆瓣上看到好多人都在推荐这本书,于是就去借来读一读,昨天晚上用了好长时间来读这本书的第一章节,感觉这本书比较符合我(有些基础还不太明白,这本书详细的进行了...

3137
来自专栏我是攻城师

程序员最恐怖的梦魇是什么?

2624
来自专栏安恒信息

Jsprime——一款JavaScript静态安全分析工具

如今,越来越多开发人开始将JavaScript作为其首选语言方案。理由很简单,JavaScript如今正越来越多地被视为应用程序的主流开发语言——无论是在Web...

3057
来自专栏大宽宽的碎碎念

如何深入理解开源项目从小代码集看起聚焦请先看文档关注资源的生命周期找一个好工具建立调试环境看代码很累,要坚持

3386

扫码关注云+社区

领取腾讯云代金券