首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)

微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)

作者头像
JackJiang
发布2018-10-10 15:18:01
3.3K0
发布2018-10-10 15:18:01
举报
文章被收录于专栏:即时通讯技术即时通讯技术

1、点评

对于IM系统来说,如何做到IM聊天消息离线差异拉取(差异拉取是为了节省流量)、消息多端同步、消息顺序保证等,是典型的IM技术难点。

就像即时通讯网整理的以下IM开发干货系列一样:

IM消息送达保证机制实现(一):保证在线实时消息的可靠投递

IM消息送达保证机制实现(二):保证离线消息的可靠投递

如何保证IM实时消息的“时序性”与“一致性”?

IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?

IM群聊消息如此复杂,如何保证不丢不重?

浅谈移动端IM的多点登陆和消息漫游原理

IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?

上面这些文章所涉及的IM聊天消息的省流量、可靠投递、离线拉取、时序性、一致性、多端同步等等问题,总结下来其实就是要解决好一个问题:即如何保证聊天消息的唯一性判定和顺序判定。

很多群友在讨论这个问题的时候,普遍考虑的是使用整型自增序列号作为消息ID(即MsgId):这样既能保证消息的唯一性又方便保证顺序性,但问题是在分布式情况下是很难保证消息id的唯一性且顺序递增的,维护id生成的一致性难度太大了(网络延迟、调试出错等等都可能导致不同的机器取到的消息id存在碰撞的可能)。

不过,通过本文中微信团队分享的微信消息序列号生成思路,实际上要解决消息的唯一性、顺序性问题,可以将一个技术点分解成两个:即将原先每条消息一个自增且唯一的消息ID分拆成两个关键属性——消息ID(msgId)、消息序列号(seqId),即消息ID只要保证唯一性而不需要兼顾顺序性(比如直接用UUID)、消息序列号只要保证顺序性而不需要兼顾唯一性(就像本文中微信的思路一样),这样的技术分解就能很好的解决原本一个消息ID既要保证唯一性又要保证顺序性的难题。

那么,如何优雅地解决“消息序列号只要保证顺序性而不需要兼顾唯一性”的问题呢?这就是本文所要分享的内容,强烈建议深入理解和阅读。

本文因篇幅较长,分为上下两篇,敬请点击阅读:

上篇:《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》(本文) 下篇:《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)

2、正文引言

微信在立项之初,就已确立了利用数据版本号(注:具体的实现也就是本文要分享的消息序列号)实现终端与后台的数据增量同步机制,确保发消息时消息可靠送达对方手机,避免了大量潜在的家庭纠纷。时至今日,微信已经走过第五个年头,这套同步机制仍然在消息收发、朋友圈通知、好友数据更新等需要数据同步的地方发挥着核心的作用。

而在这同步机制的背后,需要一个高可用、高可靠的消息序列号生成器来产生同步数据用的版本号(注:因为序列号天生的递增特性,完全可以当版本号来使用,但又不仅限于版本号的用途)。这个消息序列号生成器我们微信内部称之为 seqsvr ,目前已经发展为一个每天万亿级调用的重量级系统,其中每次申请序列号平时调用耗时1ms,99.9%的调用耗时小于3ms,服务部署于数百台4核 CPU 服务器上。

本篇将重点介绍微信的消息序列号生成器 seqsvr 的算法原理、架构核心思想,以及 seqsvr 随着业务量快速上涨所做的架构演变(下篇《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》会着重讨论分布式容灾方案,敬请关注)。

3、关于作者

曾钦松:微信高级工程师,负责过微信基础架构、微信翻译引擎、微信围棋PhoenixGo,致力于高可用高性能后台系统的设计与研发。2011年毕业于西安电子科技大学,早先曾在腾讯搜搜从事检索架构、分布式数据库方面的工作。

4、技术思路

微信服务器端为每一份需要与客户端同步的数据(例如聊天消息)都会赋予一个唯一的、递增的序列号(后文称为 sequence ),作为这份数据的版本号(这是利用了序列号递增的特性)。在客户端与服务器端同步的时候,客户端会带上已经同步下去数据的最大版本号,后台会根据客户端最大版本号与服务器端的最大版本号,计算出需要同步的增量数据,返回给客户端。这样不仅保证了客户端与服务器端的数据同步的可靠性,同时也大幅减少了同步时的冗余数据(就像这篇文章中讨论的一样:《如何保证IM实时消息的“时序性”与“一致性”?》)。

这里不用乐观锁机制来生成版本号,而是使用了一个独立的 seqsvr 来处理序列号操作:

1)一方面因为业务有大量的 sequence 查询需求——查询已经分配出去的最后一个 sequence ,而基于 seqsvr 的查询操作可以做到非常轻量级,避免对存储层的大量 IO 查询操作;

2)另一方面微信用户的不同种类的数据存在不同的 Key-Value 系统中,使用统一的序列号有助于避免重复开发,同时业务逻辑可以很方便地判断一个用户的各类数据是否有更新。

从 seqsvr 申请的、用作数据版本号的 sequence ,具有两种基本的性质:

1)递增的64位整型变量;

2)每个用户都有自己独立的64位 sequence 空间。

举个例子,小明当前申请的 sequence 为100,那么他下一次申请的 sequence ,可能为101,也可能是110,总之一定大于之前申请的100。而小红呢,她的 sequence 与小明的 sequence 是独立开的,假如她当前申请到的 sequence 为50,然后期间不管小明申请多少次 sequence 怎么折腾,都不会影响到她下一次申请到的值(很可能是51)。

这里用了每个用户独立的64位 sequence 的体系,而不是用一个全局的64位(或更高位) sequence ,很大原因是全局唯一的 sequence 会有非常严重的申请互斥问题,不容易去实现一个高性能高可靠的架构。对微信业务来说,每个用户独立的64位 sequence 空间已经满足业务要求。

目前 sequence 用在终端与后台的数据同步外,同时也广泛用于微信后台逻辑层的基础数据一致性cache中,大幅减少逻辑层对存储层的访问。虽然一个用于终端——后台数据同步,一个用于后台cache的一致性保证,场景大不相同。

但我们仔细分析就会发现,两个场景都是利用 sequence 可靠递增的性质来实现数据的一致性保证,这就要求我们的 seqsvr 保证分配出去的 sequence 是稳定递增的,一旦出现回退必然导致各种数据错乱、消息消失;另外,这两个场景都非常普遍,我们在使用微信的时候会不知不觉地对应到这两个场景:小明给小红发消息、小红拉黑小明、小明发一条失恋状态的朋友圈,一次简单的分手背后可能申请了无数次 sequence。

微信目前拥有数亿的活跃用户,每时每刻都会有海量 sequence 申请,这对 seqsvr 的设计也是个极大的挑战。那么,既要 sequence 可靠递增,又要能顶住海量的访问,要如何设计 seqsvr 的架构?我们先从 seqsvr 的架构原型说起。

5、具体的技术架构原型

不考虑 seqsvr 的具体架构的话,它应该是一个巨大的64位数组,而我们每一个微信用户,都在这个大数组里独占一格8 bytes 的空间,这个格子就放着用户已经分配出去的最后一个 sequence:cur_seq。每个用户来申请sequence的时候,只需要将用户的cur_seq+=1,保存回数组,并返回给用户。

▲ 图1:小明申请了一个sequence,返回101

5.1 预分配中间层

任何一件看起来很简单的事,在海量的访问量下都会变得不简单。前文提到,seqsvr 需要保证分配出去的sequence 递增(数据可靠),还需要满足海量的访问量(每天接近万亿级别的访问)。满足数据可靠的话,我们很容易想到把数据持久化到硬盘,但是按照目前每秒千万级的访问量(~10^7 QPS),基本没有任何硬盘系统能扛住。

后台架构设计很多时候是一门关于权衡的哲学,针对不同的场景去考虑能不能降低某方面的要求,以换取其它方面的提升。仔细考虑我们的需求,我们只要求递增,并没有要求连续,也就是说出现一大段跳跃是允许的(例如分配出的sequence序列:1,2,3,10,100,101)。

于是我们实现了一个简单优雅的策略:

1)内存中储存最近一个分配出去的sequence:cur_seq,以及分配上限:max_seq;

2)分配sequence时,将cur_seq++,同时与分配上限max_seq比较:如果cur_seq > max_seq,将分配上限提升一个步长max_seq += step,并持久化max_seq;

3)重启时,读出持久化的max_seq,赋值给cur_seq。

▲ 图2:小明、小红、小白都各自申请了一个sequence,但只有小白的max_seq增加了步长100

这样通过增加一个预分配 sequence 的中间层,在保证 sequence 不回退的前提下,大幅地提升了分配 sequence 的性能。实际应用中每次提升的步长为10000,那么持久化的硬盘IO次数从之前~10^7 QPS降低到~10^3 QPS,处于可接受范围。在正常运作时分配出去的sequence是顺序递增的,只有在机器重启后,第一次分配的 sequence 会产生一个比较大的跳跃,跳跃大小取决于步长大小。

5.2 分号段共享存储

请求带来的硬盘IO问题解决了,可以支持服务平稳运行,但该模型还是存在一个问题:重启时要读取大量的max_seq数据加载到内存中。

我们可以简单计算下,以目前 uid(用户唯一ID)上限2^32个、一个 max_seq 8bytes 的空间,数据大小一共为32GB,从硬盘加载需要不少时间。另一方面,出于数据可靠性的考虑,必然需要一个可靠存储系统来保存max_seq数据,重启时通过网络从该可靠存储系统加载数据。如果max_seq数据过大的话,会导致重启时在数据传输花费大量时间,造成一段时间不可服务。

为了解决这个问题,我们引入号段 Section 的概念,uid 相邻的一段用户属于一个号段,而同个号段内的用户共享一个 max_seq,这样大幅减少了max_seq 数据的大小,同时也降低了IO次数。

▲ 图3:小明、小红、小白属于同个Section,他们共用一个max_seq。在每个人都申请一个sequence的时候,只有小白突破了max_seq上限,需要更新max_seq并持久化

目前 seqsvr 一个 Section 包含10万个 uid,max_seq 数据只有300+KB,为我们实现从可靠存储系统读取max_seq 数据重启打下基础。

5.3 工程实现

工程实现在上面两个策略上做了一些调整,主要是出于数据可靠性及灾难隔离考虑:

1)把存储层和缓存中间层分成两个模块 StoreSvr 及 AllocSvr 。StoreSvr 为存储层,利用了多机 NRW 策略来保证数据持久化后不丢失; AllocSvr 则是缓存中间层,部署于多台机器,每台 AllocSvr 负责若干号段的 sequence 分配,分摊海量的 sequence 申请请求。

2)整个系统又按 uid 范围进行分 Set,每个 Set 都是一个完整的、独立的 StoreSvr+AllocSvr 子系统。分 Set 设计目的是为了做灾难隔离,一个 Set 出现故障只会影响该 Set 内的用户,而不会影响到其它用户。

▲ 图4:原型架构图

6、本篇小结

写到这里把 seqsvr 基本原型讲完了,正是如此简单优雅的模型,可靠、稳定地支撑着微信五年来的高速发展。五年里访问量一倍又一倍地上涨,seqsvr 本身也做过大大小小的重构,但 seqsvr 的分层架构一直没有改变过,并且在可预见的未来里也会一直保持不变。

原型跟生产环境的版本存在一定差距,最主要的差距在于容灾上。像微信的 IM 类应用,对系统可用性非常敏感,而 seqsvr 又处于收发消息、朋友圈等功能的关键路径上,对可用性要求非常高,出现长时间不可服务是分分钟写故障报告的节奏。

本文的下篇《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)会讲讲 seqsvr 的容灾方案演变。

附录:更多QQ、微信团队原创技术文章

微信朋友圈千亿访问量背后的技术挑战和实践总结》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)》 《微信团队分享:微信移动端的全文检索多音字问题解决方案》 《腾讯技术分享:Android版手机QQ的缓存监控与优化实践》 《微信团队分享:iOS版微信的高性能通用key-value组件技术实践》 《微信团队分享:iOS版微信是如何防止特殊字符导致的炸群、APP崩溃的?》 《腾讯技术分享:Android手Q的线程死锁监控系统技术实践》 《微信团队原创分享:iOS版微信的内存监控系统技术实践》 《让互联网更快:新一代QUIC协议在腾讯的技术实践分享》 《iOS后台唤醒实战:微信收款到账语音提醒技术总结》 《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》 《微信团队分享:视频图像的超分辨率技术原理和应用场景》 《微信团队分享:微信每日亿次实时音视频聊天背后的技术解密》 《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》 《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》 《腾讯团队分享:手机QQ中的人脸识别酷炫动画效果实现详解》 《腾讯团队分享 :一次手Q聊天界面中图片显示bug的追踪过程分享》 《微信团队分享:微信Android版小视频编码填过的那些坑》  《微信手机端的本地数据全文检索优化之路》  《企业微信客户端中组织架构数据的同步更新方案优化实战》 《微信团队披露:微信界面卡死超级bug“15。。。。”的来龙去脉》 《QQ 18年:解密8亿月活的QQ后台服务接口隔离技术》 《月活8.89亿的超级IM微信是如何进行Android端兼容测试的》 《以手机QQ为例探讨移动端IM中的“轻应用”》 《一篇文章get微信开源移动端数据库组件WCDB的一切!》 《微信客户端团队负责人技术访谈:如何着手客户端性能监控和优化》 《微信后台基于时间序的海量数据冷热分级架构设计实践》 《微信团队原创分享:Android版微信的臃肿之困与模块化实践之路》 《微信后台团队:微信后台异步消息队列的优化升级实践分享》 《微信团队原创分享:微信客户端SQLite数据库损坏修复实践》  《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》  《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(下篇)》  《腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(上篇)》  《微信Mars:微信内部正在使用的网络层封装库,即将开源》  《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》  《开源libco库:单机千万连接、支撑微信8亿用户的后台框架基石 [源码下载]》  《微信新一代通信安全解决方案:基于TLS1.3的MMTLS详解》  《微信团队原创分享:Android版微信后台保活实战分享(进程保活篇)》  《微信团队原创分享:Android版微信后台保活实战分享(网络保活篇)》  《Android版微信从300KB到30MB的技术演进(PPT讲稿) [附件下载]》  《微信团队原创分享:Android版微信从300KB到30MB的技术演进》  《微信技术总监谈架构:微信之道——大道至简(演讲全文)》 《微信技术总监谈架构:微信之道——大道至简(PPT讲稿) [附件下载]》  《如何解读《微信技术总监谈架构:微信之道——大道至简》》 《微信海量用户背后的后台系统存储架构(视频+PPT) [附件下载]》 《微信异步化改造实践:8亿月活、单机千万连接背后的后台解决方案》  《微信朋友圈海量技术之道PPT [附件下载]》  《微信对网络影响的技术试验及分析(论文全文)》  《一份微信后台技术架构的总结性笔记》  《架构之道:3个程序员成就微信朋友圈日均10亿发布量[有视频]》  《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》 《快速裂变:见证微信强大后台架构从0到1的演进历程(二)》  《微信团队原创分享:Android内存泄漏监控和优化技巧总结》  《全面总结iOS版微信升级iOS9遇到的各种“坑”》  《微信团队原创资源混淆工具:让你的APK立减1M》  《微信团队原创Android资源混淆工具:AndResGuard [有源码]》  《Android版微信安装包“减肥”实战记录》  《iOS版微信安装包“减肥”实战记录》  《移动端IM实践:iOS版微信界面卡顿监测方案》  《微信“红包照片”背后的技术难题》  《移动端IM实践:iOS版微信小视频功能技术方案实录》  《移动端IM实践:Android版微信如何大幅提升交互性能(一)》 《移动端IM实践:Android版微信如何大幅提升交互性能(二)》 《移动端IM实践:实现Android版微信的智能心跳机制》  《移动端IM实践:WhatsApp、Line、微信的心跳策略分析》  《移动端IM实践:谷歌消息推送服务(GCM)研究(来自微信)》 《移动端IM实践:iOS版微信的多设备字体适配方案探讨》  《信鸽团队原创:一起走过 iOS10 上消息推送(APNS)的坑》 《腾讯信鸽技术分享:百亿级实时消息推送的实战经验》 《IPv6技术详解:基本概念、应用现状、技术实践(上篇)》 《IPv6技术详解:基本概念、应用现状、技术实践(下篇)》 《腾讯TEG团队原创:基于MySQL的分布式数据库TDSQL十年锻造经验分享》 《微信多媒体团队访谈:音视频开发的学习、微信的音视频技术和挑战等》 《了解iOS消息推送一文就够:史上最全iOS Push技术详解》 《腾讯技术分享:微信小程序音视频技术背后的故事》 《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》 《微信多媒体团队梁俊斌访谈:聊一聊我所了解的音视频技术》 《腾讯音视频实验室:使用AI黑科技实现超低码率的高清实时视频聊天》 《腾讯技术分享:微信小程序音视频与WebRTC互通的技术思路和实践》 《手把手教你读取Android版微信和手Q的聊天记录(仅作技术研究学习)》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 >> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-1998-1-1.html

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、点评
  • 2、正文引言
  • 3、关于作者
  • 4、技术思路
  • 5、具体的技术架构原型
  • 6、本篇小结
  • 附录:更多QQ、微信团队原创技术文章
相关产品与服务
图片处理
图片处理(Image Processing,IP)是由腾讯云数据万象提供的丰富的图片处理服务,广泛应用于腾讯内部各产品。支持对腾讯云对象存储 COS 或第三方源的图片进行处理,提供基础处理能力(图片裁剪、转格式、缩放、打水印等)、图片瘦身能力(Guetzli 压缩、AVIF 转码压缩)、盲水印版权保护能力,同时支持先进的图像 AI 功能(图像增强、图像标签、图像评分、图像修复、商品抠图等),满足多种业务场景下的图片处理需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档