第八篇:《机器学习之神经网络(三)》

(因后文学术性较强,部分内容参见吴恩达在斯坦福大学的讲义)

与世无争的吴恩达老师

本篇内容:神经网络算法的模型表示

通过本篇的学习您将了解到神经网络模型的数学结构

有一定数据结构基础的同学可以尝试用C/C++搭建模型

神经网络的数学模型表示1

网络模型的仿生原理

为了构建神经网络模型,我们需要首先思考大脑中的神经网络是怎样的?

每一个神经元都可以被认为是一个处理单元/神经核(processing unit/Nucleus),它含有许多输入/树突(input/Dendrite),并且有一个输出/轴突(output/Axon)。神经网络是大量神经元相互链接并通过电脉冲来交流的一个网络。

下面是一组神经元的示意图,神经元利用微弱的电流进行沟通。这些弱电流也称作动作电位,其实就是一些微弱的电流。所以如果神经元想要传递一个消息,它就会就通过它的轴突,发送一段微弱电流给其他神经元,这就是轴突。

这里是一条连接到输入神经,或者连接另一个神经元树突的神经,接下来这个神经元接收这条消息,做一些计算,它有可能会反过来将在轴突上的自己的消息传给其他神经元。这就是所有人类思考的模型:我们的神经元把自己的收到的消息进行计算,并向其他神经元传递消息。这也是我们的感觉和肌肉运转的原理。如果你想活动一块肌肉,就会触发一个神经元给你的肌肉发送脉冲,并引起你的肌肉收缩。如果一些感官:比如说眼睛想要给大脑传递一个消息,那么它就像这样发送电脉冲给大脑的。

神经网络的模型表示

神经网络模型建立在很多神经元之上,每一个神经元又是一个个学习模型。这些神经元(也叫激活单元,activation unit)采纳一些特征作为输出,并且根据本身的模型提供一个输出。下图是一个以逻辑回归模型作为自身学习模型的神经元示例,在神经网络中,参数又可被成为权重(weight)。

我们设计出了类似于神经元的神经网络,效果如下:

左侧的 x1,x2,x3 是输入单元(input units),我们将原始数据输入给它们。

中间单元a1(2),a2(2),a3(2),它们负责将数据进行处理,然后呈递到下一层。

这里的数据处理其实就是逻辑回归的方法,比如a1(2)代表第二层神经元的第一个,它的值由上一层神经元和对应参数构成,可以看到,a1(2)通过三条线连接了左侧的神经元x1,x2,x3,每一条线其实就是一个参数值,它的深层含义是:该神经元对于下一层的对应神经元的影响力

从中间层开始每一个神经元都是上一层神经元们逻辑回归的结果,以及下一层逻辑回归的特征值

最后是输出单元,它负责计算。

神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。下图为一个3层的神经网络,第一层成为输入层(Input Layer),最后一层称为输出层(Output Layer),中间一层成为隐藏层(Hidden Layers)。我们为每一层都增加一个偏差单位(bias unit):

下面引入一些标记法来帮助描述模型:

ai(j) 代表第 j 层的第 i 个激活单元。theta(j) 代表从第 j 层映射到第 j+1 层时的权重的矩阵,例如 theta(1) 代表从第一层映射到第二层的权重的矩阵。其尺寸为:以第 j+1 层的激活单元数量为行数,以第 j 层的激活单元数加一为列数的矩阵。例如:上图所示的神经网络中 theta(1) 的尺寸为 3*4。

对于上图所示的模型,激活单元和输出分别表达为:

上面进行的讨论中只是将特征矩阵中的一行(一个训练实例)喂给了神经网络,我们需要将整个训练集都喂给我们的神经网络算法来学习模型。

我们可以知道:每一个 a 都是由上一层所有的 x 和每一个 x 所对应的权重 theta 决定的。

(我们把这样从左到右的算法称为前向传播算法( FORWARD PROPAGATION ))

神经网络的数学模型表示2

前向传播算法( FORWARD PROPAGATION ) 相对于使用循环来编码,利用向量化的方法会使得计算更为简便。以上面的神经网络为例,试着计算第二层的值:

这只是针对训练集中一个训练实例所进行的计算。如果我们要对整个训练集进行计算,我们需要将训练集特征矩阵进行转置,使得同一个实例的特征都在同一列里。即:

为了更好了了解Neuron Networks的工作原理,我们先把左半部分遮住:

右半部分其实就是以, 按照Logistic Regression的方式输出:

logistic regression ——逻辑回归

我们可以 a0,a1,a2,a3 把看成更为高级的特征值,也就是 x0,x1,x2,x3 的进化体,并且它们是由 x 与 theta 决定的,因为是梯度下降的,所以是变化的,并且变得越来越厉害,所以这些更高级的特征值远比仅仅将 次方厉害,也能更好的预测新数据。

这就是神经网络相比于逻辑回归和线性回归的优势。

~o给喜欢机器学习的同学们的福利o~

《斯坦福大学吴恩达机器学习讲义》

原文发布于微信公众号 - ACM算法日常(acm-clan)

原文发表时间:2018-10-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

学界 | 带引导的进化策略:摆脱随机搜索中维数爆炸的魔咒

机器学习模型的优化常常涉及最小化代价函数,其中代价关于模型参数的梯度是已知的。当梯度信息可用时,梯度下降和变量等一阶方法因其易于实现、存储效率高(通常需要与参数...

8810
来自专栏量子位

怎样构建深度学习模型?六步走,时刻小心过拟合 | 入门指南

12620
来自专栏GAN&CV

3D卷积简介

注:本文首发在微信公众号-极市平台。如需转载,请联系微信Extreme-Vision

1.7K30
来自专栏人工智能LeadAI

Tensorflow新手通过PlayGround可视化初识神经网络

是不是觉得神经网络不够形象,概念不够清晰,如果你是新手,来玩玩PlayGround就知道,大神请绕道。 PlayGround是一个在线演示、实验的神经网络平台,...

53540
来自专栏marsggbo

论文笔记系列-DARTS: Differentiable Architecture Search

我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型...

62240
来自专栏大数据挖掘DT机器学习

文本挖掘之三种特征选择(python 实现)

机器学习算法的空间、时间复杂度依赖于输入数据的规模,维度规约(Dimensionality reduction)则是一种被用于降低输入数据维数的方法。维度规约可...

45070
来自专栏数据科学与人工智能

【应用】 信用评分:第7部分 - 信用风险模型的进一步考虑

以满足科学模型开发的主要标志 - 严谨性,可测试性,可复制性和精确性以及可信度 - 考虑模型验证以及如何处理不平衡数据非常重要。 本文概述了可用于满足这些标志的...

11230
来自专栏超然的博客

Graph Attention Networks

paper:https://mila.quebec/wp-content/uploads/2018/07/d1ac95b60310f43bb5a0b802452...

28910
来自专栏机器之心

学界 | 三维对抗样本的生成方法MeshAdv,成功欺骗真实场景中的分类器和目标检测器

作者:Dawei Yang,Chaowei Xiao,Bo Li,Jia Deng,Mingyan Liu

12140
来自专栏AI研习社

用 TensorFlow 实现物体检测的像素级分类

雷锋网 AI 科技评论按:本文作者 Priyanka Kochhar 从事数据科学十多年,现在在运营一家深度学习咨询公司,她曾帮助多家创业公司完成人工智能解决方...

12420

扫码关注云+社区

领取腾讯云代金券