专栏首页本立2道生OpenCV各版本差异与演化,从1.x到4.0

OpenCV各版本差异与演化,从1.x到4.0

写在前面

最近因项目需要,得把OpenCV捡起来,登录OpenCV官网,竟然发现release了4.0.0-beata版本,所以借此机会,查阅资料,了解下OpenCV各版本的差异及其演化过程,形成了以下几点认识:

  1. 新版本的产生是为了顺应当下的需要,通过版本更新,接纳新技术和新方法,支持新兴编程语言接口,使用新的指令集,优化性能,解决固有问题等
  2. 新技术新方法会优先加入到新的大版本中,即使新的技术方法可以在旧版本中实现,但为了推动用户向新版本迁移,仍会优先加入到新版本中(这条看着与第1条差不多,实际意义是不同的)
  3. 新版本不可避免地会带有旧版本的痕迹,毕竟新版本是从旧版本基础上“生长”出来的,新老版本间能看到比较明显的过渡痕迹,同时出于降低迁移成本的考虑,需要(部分)向前兼容

因此,如果新版本已经稳定,且需要从头开始新项目,先考虑拥抱新版本。若碰到问题,可到旧版本的资料中找找答案。但这并不绝对,具体情况还得具体分析。

下面分析下各版本的差异以及演化路径。

OpenCV版本差异与演化,1.x To 4.0

OpenCV 1.x

OpenCV 最初基于C语言开发,API也都是基于C的,面临内存管理、指针等C语言固有的麻烦。

2006年10月1.0发布时,部分使用了C++,同时支持Python,其中已经有了random trees、boosted trees、neural nets等机器学习方法,完善对图形界面的支持。

2008年10月1.1pre1发布,使用 VS2005构建,Python bindings支持Python 2.6,Linux下支持Octave bindings,在这一版本中加入了SURF、RANSAC、Fast approximate nearest neighbor search等,Face Detection (cvHaarDetectObjects)也变得更快。

OpenCV 2.x

当C++流行起来,OpenCV 2.x发布,其尽量使用C++而不是C,但是为了向前兼容,仍保留了对C API的支持。从2010年开始,2.x决定不再频繁支持和更新C API,而是focus在C++ API,C API仅作备份。

2009年9月2.0 beta发布,主要使用CMake构建,加入了很多新特征、描述子等,如FAST、LBP等。

2010年4月2.1版本,加入了Grabcut等,可以使用SSE/SSE2…指令集。

2010年10月2.2版本发布,OpenCV的模块变成了大家熟悉的模样,像opencv_imgprocopencv_features2d等,同时有了opencv_contrib用于放置尚未成熟的代码,opencv_gpu放置使用CUDA加速的OpenCV函数。

2011年6月起的2.3.x版本、2012年4月起的2.4.x版本,一面增加新方法,一面修复bug,同时加强对GPU、Java for Android、 OpenCL、并行化的支持等等,OpenCV愈加稳定完善,值得注意的是 SIFT和SURF从2.4开始被放到了nonfree 模块(因为专利)。

考虑到过渡,OpenCV 2.4.x仍在维护,不过以后可能仅做bug修复和效率提升,不再增加新功能——鼓励向3.x迁移。

OpenCV 3.x

随着3.x的发布,1.x的C API将被淘汰不再被支持,以后C API可能通过C++源代码自动生成。3.x与2.x不完全兼容,与2.x相比,主要的不同之处在于OpenCV 3.x 的大部分方法都使用了OpenCL加速

2014年8月3.0 alpha发布,除大部分方法都使用OpenCL加速外,3.x默认包含以及使用IPP,同时,matlab bindings、Face Recognition、SIFT、SURF、 text detector、motion templates & simple flow 等都移到了opencv_contrib下(opencv_contrib不仅存放了尚未稳定的代码,同时也存放了涉及专利保护的技术实现),大量涌现的新方法也包含在其中。

2017年8月3.3版本,2017年12月开始的3.4.x版本,opencv_dnn从opencv_contrib移至opencv,同时OpenCV开始支持C++ 11构建,之后明显感到对神经网络的支持在加强,opencv_dnn被持续改进和扩充。

OpenCV 4.0

2018年10月4.0.0发布,OpenCV开始需要支持C++11的编译器才能编译,同时对几百个基础函数使用 "wide universal intrinsics"重写,这些内联函数可以根据目标平台和编译选项映射为SSE2、 SSE4、 AVX2、NEON 或者 VSX 内联函数,获得性能提升。此外,还加入了QR code的检测和识别,以及Kinect Fusion algorithm,DNN也在持续改善和扩充。

总结

这些年来,计算机视觉领域的新技术新方法不断涌现,指令集、编程语言和并行化技术越发先进,OpenCV也在紧跟时代的脚步,不断吸收完善自身。本文仅对OpenCV的演化过程仅总结了部分要点,详细可参见 OpenCV 在 github上的ChangeLog。

参考

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Group Convolution分组卷积,以及Depthwise Convolution和Global Depthwise Convolution

    Group Convolution分组卷积,最早见于AlexNet——2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使...

    李拜六不开鑫
  • ZFNet(2013)及可视化的开端

    ZFNet出自论文《 Visualizing and Understanding Convolutional Networks》,作者Matthew D. Ze...

    李拜六不开鑫
  • 从卷积拆分和分组的角度看CNN模型的演化

    如题,这篇文章将尝试从卷积拆分的角度看一看各种经典CNN backbone网络module是如何演进的,为了视角的统一,仅分析单条路径上的卷积形式。

    李拜六不开鑫
  • ubuntu下如何安装两个版本OpenCV?

    由于在很多视觉项目的开发、研究过程中,经常会涉及OpenCV不同版本在ubuntu系统下的安装。因此小凡在此简单总结一下两个版本的OpenCV在ubuntu系统...

    小白学视觉
  • 联系我们吧 - 12个联系我们表单和页面设计赏析和学习

    设计网站时,关于我们页面和联系页面(contact us page)往往是必要页面之一。虽然只是一个简单的页面,但要真的能让用户有联系你的冲动还是很有挑战性。如...

    奔跑的小鹿
  • matlab编程小技巧

    2、少用循环,尤其是避免多重循环嵌套,尽量用向量化的运算来代替循环操作。在必须使用多重循环的情况下,若各层循环执行的次数不同,则在循环的外层执行循环次数少的,内...

    艾木樨
  • 统计简单学_假说检定

    取样10个,2白8黑,预测盒子白球占比20%,这叫做估计,是由样本情况推测群体情况。 取样10个,2白8黑,别人说全是白球,通过样本的数据推翻了别人对于群体...

    用户1147754
  • 【Spring实战】—— 9 AOP环绕通知

    假如有这么一个场景,需要统计某个方法执行的时间,如何做呢?   典型的会想到在方法执行前记录时间,方法执行后再次记录,得出运行的时间。 如果采用Sp...

    用户1154259
  • windows下多版本python环境变量设置与pip不同版本方法(三步骤)

    1。对于两个版本首先要添加进去环境变量,这个很简单,网上有很多,一半找到文件所属目录即可,即文件属性(F:\anaconda2)

    学到老
  • cssjshtml js 循环forEach

    葫芦

扫码关注云+社区

领取腾讯云代金券