深度有趣 | 05 自编码器图像去噪

简介

自编码器(AutoEncoder)是深度学习中的一类无监督学习模型,由encoder和decoder两部分组成

  • encoder将原始表示编码成隐层表示
  • decoder将隐层表示解码成原始表示
  • 训练目标为最小化重构误差
  • 隐层特征维度一般低于原始特征维度,降维的同时学习更稠密更有意义的表示

自编码器主要是一种思想,encoder和decoder可以由全连接层、CNN或RNN等模型实现

以下使用Keras,用CNN实现自编码器,通过学习从加噪图片到原始图片的映射,完成图像去噪任务

准备

用到的数据是MNIST,手写数字识别数据集,Keras中自带

训练集5W条,测试集1W条,都是28 × 28 的灰度图。

这里我们用IPython写代码,因为有些地方需要交互地进行展示

在项目路径运行以下命令,启动IPython

jupyter notebook

加载库

# -*- coding: utf-8 -*-

from keras.datasets import mnist
import numpy as np

加载MNIST数据,不需要对应的标签,将像素值归一化到0至1,重塑为 N × 1 × 28 × 28 的四维 tensor,即张量,1表示颜色通道,即灰度图

(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))

添加随机白噪声,并限制加噪后像素值仍处于0至1之间

noise_factor = 0.5
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) 
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) 
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)

看一下加噪后的效果

import matplotlib.pyplot as plt
%matplotlib inline

n = 10
plt.figure(figsize=(20, 2))
for i in range(n):
    ax = plt.subplot(1, n, i + 1)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

模型实现

定义模型的输入

from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model, load_model

input_img = Input(shape=(28, 28, 1,))

实现encoder部分,由两个 3 × 3 × 32 的卷积和两个 2 × 2 的最大池化组成

x = Conv2D(32, (3, 3), padding='same', activation='relu')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), padding='same', activation='relu')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

实现decoder部分,由两个 3×3×32 的卷积和两个 2×2 的上采样组成

# 7 * 7 * 32
x = Conv2D(32, (3, 3), padding='same', activation='relu')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), padding='same', activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), padding='same', activation='sigmoid')(x)

将输入和输出连接,构成自编码器并compile

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

使用x_train作为输入和输出进行训练,使用x_test进行校验

autoencoder.fit(x_train_noisy, x_train,
                epochs=100,
                batch_size=128,
                shuffle=True,
                validation_data=(x_test_noisy, x_test))

autoencoder.save('autoencoder.h5')

在CPU上训练比较慢,有条件的话可以用GPU,速度快上几十倍

这里将训练后的模型保存下来,之后或在其他地方都可以直接加载使用

使用自编码器对x_test_noisy预测,绘制预测结果,和原始加噪图像进行对比,便可以得到一开始的对比效果图

autoencoder = load_model('autoencoder.h5')

decoded_imgs = autoencoder.predict(x_test_noisy)

n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
    # display original
    ax = plt.subplot(2, n, i + 1)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
 
    # display reconstruction
    ax = plt.subplot(2, n, i + 1 + n)
    plt.imshow(decoded_imgs[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

参考

  • Building Autoencoders in Keras:https://blog.keras.io/building-autoencoders-in-keras.html

视频讲解课程

https://study.163.com/course/courseMain.htm?courseId=1004777011

原文发布于微信公众号 - 宏伦工作室(HonlanFarm)

原文发表时间:2018-11-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

Python中Keras深度学习库的回归教程

Keras 是一个深度学习库,它封装了高效的数学运算库 Theano 和 TensorFlow。

2.6K100
来自专栏人工智能LeadAI

layer定义 | 深度学习caffe框架

首先让我们回顾一下caffe的代码层次: blob,layer, net和solver.

10310
来自专栏生信小驿站

使用R语言进行机器学习特征选择①

特征选择是实用机器学习的重要一步,一般数据集都带有太多的特征用于模型构建,如何找出有用特征是值得关注的内容。

42540
来自专栏机器学习养成记

缺失值处理(r语言,mice包)

对缺失值的处理是数据预处理中的重要环节,造成数据缺失的原因有:数据丢失、存储故障和调查中拒绝透露相关信息。这里我们使用VIM包中的sleep数据集为样本,介绍缺...

75470
来自专栏磐创AI技术团队的专栏

使用Keras进行深度学习:(一)Keras 入门

导语 Keras是Python中以CNTK、Tensorflow或者Theano为计算后台的一个深度学习建模环境。相对于其他深度学习的框架,如Tensorflo...

38360
来自专栏用户2442861的专栏

概率论-最大似然估计

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/d...

10110
来自专栏文武兼修ing——机器学习与IC设计

mxnet RNN简单剖析官方github教程部分代码

import mxnet as mx 官方github教程部分代码 网络生成 num_layers = 2 num_hidden = 256 stack = m...

39670
来自专栏磐创AI技术团队的专栏

TensorFlow 手写数字识别与一步一步实现卷积神经网络(附代码实战)

手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。 数据准备 MNIST 数...

73860
来自专栏owent

PKU POJ 2976 Dropping tests 解题报告

题目链接: http://acm.pku.edu.cn/JudgeOnline/problem?id=2976

9810
来自专栏生信小驿站

R 支持向量机①

11020

扫码关注云+社区

领取腾讯云代金券