交叉验证

版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。

训练集用来训练模型,验证集用于模型的选择,而测试集用于最终对学习方法的评估。

在学习到不同的复杂度的模型中,选择对验证集有最小预测误差的模型,由于验证集有足够多的数据,用它对模型进行选择也是有效的。

但是,在许多实际应用中数据是不充足的,为了选择好的模型,可以采用交叉验证方法,交叉验证的基本思想是重复地使用数据;把给定的数据进行切分,将切分的数据组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。

1、简单交叉验证

简单交叉验证是:首先随机地将已给数据分成两部分,一部分作为训练集,另一部分作为测试集(比如,70%的数据为训练集,30%的数据为测试集);然后用训练集在各种情况下(例如,不同的参数个数)训练模型,从而得到不同的模型;在测试集上评价各个模型的测试误差,选出测试误差最小的模型。

2、S折交叉验证

应用最多是S折交叉验证,方法如下:首先随机地将已给数据切分为S个互不相交的大小相同的子集;然后利用S-1个子集的数据训练模型,利用余下的子集测试模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。

3、留一交叉验证

S折交叉验证的特殊情形是S==N,称为留一交叉验证,往往在数据缺乏的情况下使用,这里,N是给定数据集的容量。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏SnailTyan

Single Shot MultiBox Detector论文翻译——中英文对照

SSD: Single Shot MultiBox Detector Abstract We present a method for detecting ob...

2700
来自专栏AI研习社

用Kaggle经典案例教你用CNN做图像分类!

前言 在上一篇专栏《利用卷积自编码器对图片进行降噪》中,我们利用卷积自编码器对 MNIST 数据进行了实验,这周我们来看一个 Kaggle 上比较经典的一...

4106
来自专栏marsggbo

DeepLearning.ai学习笔记(四)卷积神经网络 -- week1 卷积神经网络基础知识介绍

一、计算机视觉 ? 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计...

22710
来自专栏深度学习思考者

深度学习目标检测算法——Faster-Rcnn

Faster-Rcnn代码下载地址:https://github.com/ShaoqingRen/faster_rcnn 一 前言   Faster rcnn是...

3285
来自专栏null的专栏

简单易学的机器学习算法——EM算法

一、机器学习中的参数估计问题 image.png 二、EM算法简介     在上述存在隐变量的问题中,不能直接通过极大似然估计求出模型中的参数,EM算法是一种解...

1.8K5
来自专栏漫漫深度学习路

两种交叉熵损失函数的异同

在学习机器学习的时候,我们会看到两个长的不一样的交叉熵损失函数。 假设我们现在有一个样本 {x,t},这两种损失函数分别是。 [图片] , t_j说明样本...

2559
来自专栏AIUAI

目标检测 - Faster R-CNN 中 RPN 原理

4998
来自专栏人工智能LeadAI

译文 | 与TensorFlow的第一次接触 第五章:多层神经网络

本章中,我们继续使用之前章节中的MNIST数字识别问题,与读者一起编码实现一个简单的深度学习神经网络。 如我们所了解的,一个深度学习神经网络由相互叠加的多层组成...

3454
来自专栏机器学习算法工程师

深入浅出解读卷积神经网络

作者:石文华 编辑:田 旭 卷积神经网络 ? 图1 全连接神经网络结构图 ? 图2 卷积神经网络结构图 卷积神经网络和全连接的神经网络结构上的差异还是比较大的,...

2834
来自专栏marsggbo

Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

之前看过一遍,但是总是模模糊糊的感觉,也刚入门,虽然现在也是入门,但是对于一些概念已经有了比较深的认识(相对于最开始学习机器学习的时候)。所以为了打好基础,决定...

2297

扫码关注云+社区

领取腾讯云代金券